References

  1. A.E. Downie, L. Van Zwieten, R.J. Smernik, S. Morris, P.R. Munroe, Terra Preta Australis: reassessing the carbon storage capacity of temperate soils, Agric. Ecosyst. Environ., 140 (2011) 137–147.
  2. Q. Yao, J. Liu, Z. Yu, Y. Li, J. Jin, X. Liu, Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China, Appl. Soil Ecol., 113 (2017) 11–21.
  3. T.M. Abdel-Fattah, M.E. Mahmoud, S.B. Ahmed, M.D. Huff, J.W. Lee, S. Kumar, Biochar from woody biomass for removing metal contaminants and carbon sequestration, J. Ind. Eng. Chem., 22 (2015) 103–109.
  4. Y. Han, A.A. Boateng, P.X. Qi, I.M. Lima, J. Chang, Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties, J. Environ. Manage., 118 (2013) 196–204.
  5. F. Reguyal, A.K. Sarmah, W. Gao, Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution, J. Hazard. Mater., 321 (2016) 868–878.
  6. J. Ren, N. Li, L. Li, J.K. An, L. Zhao, N.Q. Ren, Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water, Bioresour. Technol., 178 (2015) 119–125.
  7. B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76 (2009) 127–133.
  8. S.Y. Wang, Y.K. Tang, C. Chen, J.T. Wu, Z. Huang, Y.Y. Mo, K.X. Zhang, J.B. Chen, Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II) removal, Bioresour. Technol., 186 (2015) 360–364.
  9. F.M. Pellera, A. Giannis, D. Kalderis, K. Anastasiadou, R. Stegmann, J.Y. Wang, E. Gidarkos, Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products, J. Environ. Manage., 96 (2012) 35–42.
  10. K.R. Thines, E.C. Abdullah, N.M. Mubarak, M. Ruthiraan, Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review, Renew. Sustain. Energy Rev., 67 (2017) 257–276.
  11. X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M.B. McBride, A.G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102 (2011) 8877–8884.
  12. M.L. Sanyang, W.A.W.A.K. Ghani, A. Idris, M.B. Ahmad, Hydrogel biochar composite for arsenic removal from wastewater, Desal. Wat. Treat., 57 (2016) 3674–3688.
  13. I. Herath, P. Kumarathilaka, M.I. Al.-Wabel, A. Abduljabbar, M. Ahmad, A.R.A. Usman, G. Vithanage, Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar, Microporous Mesoporous Mater., 225 (2016) 280–288.
  14. M. Imamoglu, O. Tekir, Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination, 228 (2008) 108–113.
  15. F.M. Pellera, E. Gidarakos, Effect of dried olive pomace – derived biochar on the mobility of cadmium and nickel in soil, J. Environ. Chem. Eng., 3 (2015) 1163–1176.
  16. Y.K. Kiran, A. Barkat, X. Cui, Y. Feng, F. Pan, L. Tang, X. Yang, Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil, J. Integr. Agric., 16 (2017) 725–734.
  17. S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Z. Wang, X. Li, Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism, J. Mol. Liq., 220 (2016) 432–441.
  18. W. Zhang, S. Mao, H. Chen, L. Huang, R.L. Qiu, Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions, Bioresour. Technol., 147 (2013) 545–552.
  19. D.H.K. Reddy, S.M. Lee, K. Seshaiah, Biosorption of toxic heavy metal ions from water environment using honeycomb biomass—an industrial waste material, Water Air Soil Pollut., 223 (2012) 5967–5982.
  20. H.S. Kambo, A. Dutta, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications, Renew. Sustain. Energy Rev., 45 (2015) 359–378.
  21. L. Hadjittofi, I. Pashalidis, Thorium removal from acidic aqueous solutions by activated biochar derived from cactus fibers, Desal. Wat. Treat., 57 (2016) 27864–27868.
  22. http://www.coaltecenergy.com/biochar/
  23. C. Rosik-Dulewska, Podstawy gospodarki odpadami, Wydawnictwo Naukowe PWN, Warszawa, 2010.
  24. K. Wiedner, C. Rumpel, C. Steiner, A. Pozzi, R. Maas, B. Glaser, Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale, Biomass Bioenergy, 59 (2013) 264–278.
  25. T. Kan, V. Strezov, T.J. Evans, Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters, Renew. Sustain. Energy Rev., 57 (2016) 1126–1140.
  26. A. Shah, M.J. Darr, D. Dalluge, D. Medic, K. Webster, R.C. Brown, Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs, Bioresour. Technol., 125 (2012) 348–352.
  27. S.K. Gunatilakea, R. Chandrajith, Removal of Pb(II) from contaminated water using low-temperature pyrolyzed agricultural and forest waste biochars: a comparative study, Desal. Wat. Treat., 62 (2017) 316–324.
  28. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review, Bioresour. Technol., 160 (2014) 191–202.
  29. C. Wu, V.L. Budarin, M. Wang, V. Sharifi, M.J. Gronnow, Y. Wu, J. Swithenbank, J.H. Clark, P.T. Williams, CO2 gasification of bio-char derived from conventional and microwave pyrolysis, Appl. Energy, 157 (2015) 533–539.
  30. H. Wikberg, S. Grönqvist, P. Niemi, A. Mikkelson, M. Siika-Aho, H. Kanerva, A. Käsper, T. Tamminen, Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues, Bioresour. Technol., 235 (2017) 70–78.
  31. M.C. Rillig, M. Wagner, M. Salem, P.M. Antunes, C. George, H.G. Ramke, M.M. Titirici, M. Antonietti, Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza, Appl. Soil Ecol., 45 (2010) 238–242.
  32. M.A. Martín-Lara, A. Ronda, M.C. Zamora, M. Calero, Torrefaction of olive tree pruning: effect of operating conditions on solid product properties, Fuel, 202 (2017) 109–117.
  33. V. Repellin, A. Govin, M. Rolland, R. Guyonnet, Energy requirement for fine grinding of torrefied wood, Biomass Bioenergy, 34 (2010) 923–930.
  34. S. Malghani, G. Gleixner, S.E. Trumbore, Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions, Soil Biol. Biochem., 62 (2013) 137–146.
  35. H. Li, X. Dong, B. Evandro, L.M. De Oliveira, Y. Chen, L.Q. Ma, Mechanisms of metal sorption by biochars: biochar characteristics and modifications, Chemosphere, 178 (2017) 466–478.
  36. E. Kim, C. Juang, J. Han, N. Her, C.M. Park, A. Son, Y. Yoon, Adsorption of selected micropollutants on powdered activated carbon and biochar in the presence of kaolinite, Desal. Wat. Treat., 57 (2016) 27601–27613.
  37. A. Bagreev, T.J. Bandosz, D.C. Locke, Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer, Carbon, 39 (2001) 1971–1979.
  38. M. Ahmedna, W.E. Marshall, A.A. Husseiny, R.M. Rao, The use of nutshell carbons in drinking water filters for removal of trace metals, Water Res., 38 (2004) 1062–1068.
  39. A.C. Lua, A.T. Yang, J. Guo, Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells, J. Anal. Appl. Pyrolysis, 72 (2004) 279–287.
  40. Z. Tan, C.S. Lin, X. Ji, T.J. Rainey, Returning biochar to fields: a review, Appl. Soil Ecol., 116 (2017) 1–11.
  41. D. Rehrah, R.R. Bansode, O. Hassan, M. Ahmedna, Physicochemical characterization of biochars from solid municipal waste for use in soil amendment, J. Anal. Appl. Pyrolysis, 118 (2016) 42–53.
  42. M. Uchimiya, S. Chang, K.T. Klasson, Screening biochars for heavy metal retention in soil: role of oxygen functional groups, J. Hazard. Mater., 190 (2011) 432–441.
  43. T.R. Pacioni, D. Soares, M. Di Domenico, M.F. Rosa, R. De Fatima, P. Muniz, H.J. Jose, Bio-syngas production from agroindustrial biomass residues by steam gasification, Waste Manage., 58 (2016) 221–229.
  44. A. Enders, K. Hanley, T. Whitman, S. Joseph, J. Lehmann, Characterization of biochars to evaluate recalcitrance and agronomic performance, Bioresour. Technol., 11 (2012) 644–653.
  45. C. Tan, Z. Yaxin, W. Hongtao, J. Wenjing, Z. Zeyu, Z. Yuancheng, R. Lulu, Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge, Bioresour. Technol., 164 (2014) 47–54.
  46. J.H. Yuan, R.K. Xu, H. Zhang, The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresour. Technol., 102 (2011) 3488–3497.
  47. R.B. Fidel, D.A. Laird, M.L. Thompson, M. Lawrinenko, Characterization and quantification of biochar alkalinity, Chemosphere, 167 (2017) 367–373.
  48. L. Beesley, E. Moreno-Jiménez, J.L. Gomez-Eyles, Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil, Environ. Pollut., 158 (2010) 2282–2287.
  49. K. Radhakrishnan, L. Sethurman, R. Panjanathan, A. Natarajan, V. Solaiappan, W.R. Thilagaraj, Biosorption of heavy metals from actual electroplating in fixed bed column, Desal. Wat. Treat., 57 (2016) 3572–3587.
  50. D. Kołodyńska, J. Krukowska, P. Thomas, Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon, Chem. Eng. J., 307 (2017) 353–363.
  51. J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune, D.C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere, 142 (2016) 77–83.
  52. T. Sizmur, T. Fresno, G. Akgül, H. Frost, E. Moreno-Jiménez, Biochar modification to enhance sorption of inorganics from water, Bioresour. Technol., 246 (2017) 34–47. doi:10.1016/j. biortech.2017.07.082
  53. I.M. Lima, A.A. Boateng, K.T. Klasson, Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts, J. Chem. Technol. Biotechnol., 85 (2010) 1515–1521.
  54. W. Ding, X. Dong, I.M. Ime, B. Gao, L.Q. Ma, Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars, Chemosphere, 105 (2014) 68–74.
  55. H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar, Water Res., 46 (2012) 854–862.
  56. Y. Xiao, Y. Xue, F. Gao, A. Mosa, Sorption of heavy metal ions onto crayfish shell biochar: effect of pyrolysis temperature, pH and ionic strength, J. Taiwan Inst. Chem. Eng., 80 (2017) 114–121.
  57. S. Batool, M. Idrees, Q. Hussain, J. Kong, Adsorption of copper(II) by using derived-farmyard and poultry manure biochars: efficiency and mechanism, Chem. Phys. Lett., 689 (2017) 190–198.
  58. M. Inyang, E. Dickenson, The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review, Chemosphere, 134 (2015) 232–240.
  59. J. Li, Y. Li, Y. Wu, M. Zheng, A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant, J. Hazard. Mater., 280 (2014) 450–457.
  60. C. Chen, W. Zhou, D. Lin, Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution, Bioresour. Technol., 179 (2015) 359–366.
  61. P. Zhang, H. Sun, L. Yu, T. Sun, Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars, J. Hazard. Mater., 244–245 (2013) 217–224.
  62. S. Mondal, K. Aikat, G. Halder, Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: equilibrium, kinetics, thermodynamics and modeling, Ecol. Eng., 92 (2016) 158–172.
  63. H.R. Buser, T. Poiger, M.D. Muller, Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater, Environ. Sci. Technol., 33 (1999) 2529–2535.
  64. P. Nautiyal, K.A. Subramanian, M.G. Dastidar, Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternate use of waste of biodiesel industry, J. Environ. Manage., 182 (2016) 187–197.
  65. S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
  66. R.K. Xu, S. Xiao, J.H. Yuan, A.Z. Zhao, Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues, Bioresour. Technol., 102 (2011) 10293–10298.
  67. X. Zhang, B. Gao, Y. Zheng, X. Hu, A. Elise, M.D. Annable, Y. Li, Biochar for volatile organic compound (VOC) removal: sorption performance and governing mechanisms, Bioresour. Technol., 245 (2017) 606–614.
  68. N. Karakoyun, S. Kubilay, N. Aktas, O. Turhan, M. Kasimoglu, S. Yilmaz, N. Sahiner, Hydrogel-biochar composites for effective organic contaminant removal from aqueous media, Desalination, 280 (2011) 319–325.
  69. A.U. Rajapaksha, S.S. Chen, D.W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok, Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification, Chemosphere, 148 (2016) 276–291.
  70. P. Devi, A.K. Saroha, Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent, Bioresour. Technol., 169 (2014) 525–531.
  71. P. Devi, A.K. Saroha, Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge, Chem. Eng. J., 271 (2015) 195–203.
  72. D. Kołodyńska, J. Bąk, M. Kozioł, L.V. Pylypchuk, Investigations of heavy metal ion sorption using nanocomposites of ironmodified biochar, Nanoscale Res. Lett., 12 (2017) 433–446.
  73. S. Mandal, B. Sarkar, N. Bolan, Y.S. Ok, R. Naidu, Enhancement of chromate reduction in soils by surface modified biochar, J. Environ. Manage., 186 (2016) 277–284.
  74. Y. Zhou, B. Gao, A.R. Zimmerman, H. Chen, M. Zhang, X. Cao, Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions, Bioresour. Technol., 152 (2014) 538–542.
  75. Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Sorption of heavy metals on chitosan-modified biochars and its biological effects, Chem. Eng. J., 231 (2013) 512–518.
  76. X. Cui, X. Dai, K.Y. Khan, T. Li, X. Yang, Z. He, Removal of phosphate from aqueous solution using magnesium-alginate/ chitosan modified biochar microspheres derived from Thalia dealbata, Bioresour. Technol., 218 (2016) 1123–1132.