References
- A.E. Downie, L. Van Zwieten, R.J. Smernik, S. Morris, P.R.
Munroe, Terra Preta Australis: reassessing the carbon storage
capacity of temperate soils, Agric. Ecosyst. Environ., 140 (2011)
137–147.
- Q. Yao, J. Liu, Z. Yu, Y. Li, J. Jin, X. Liu, Changes of bacterial
community compositions after three years of biochar
application in a black soil of northeast China, Appl. Soil Ecol.,
113 (2017) 11–21.
- T.M. Abdel-Fattah, M.E. Mahmoud, S.B. Ahmed, M.D. Huff,
J.W. Lee, S. Kumar, Biochar from woody biomass for removing
metal contaminants and carbon sequestration, J. Ind. Eng.
Chem., 22 (2015) 103–109.
- Y. Han, A.A. Boateng, P.X. Qi, I.M. Lima, J. Chang, Heavy metal
and phenol adsorptive properties of biochars from pyrolyzed
switchgrass and woody biomass in correlation with surface
properties, J. Environ. Manage., 118 (2013) 196–204.
- F. Reguyal, A.K. Sarmah, W. Gao, Synthesis of magnetic biochar
from pine sawdust via oxidative hydrolysis of FeCl2 for the
removal sulfamethoxazole from aqueous solution, J. Hazard.
Mater., 321 (2016) 868–878.
- J. Ren, N. Li, L. Li, J.K. An, L. Zhao, N.Q. Ren, Granulation and
ferric oxides loading enable biochar derived from cotton stalk to
remove phosphate from water, Bioresour. Technol., 178 (2015)
119–125.
- B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by
biochars of orange peels with different pyrolytic temperatures,
Chemosphere, 76 (2009) 127–133.
- S.Y. Wang, Y.K. Tang, C. Chen, J.T. Wu, Z. Huang, Y.Y. Mo, K.X.
Zhang, J.B. Chen, Regeneration of magnetic biochar derived
from eucalyptus leaf residue for lead(II) removal, Bioresour.
Technol., 186 (2015) 360–364.
- F.M. Pellera, A. Giannis, D. Kalderis, K. Anastasiadou, R.
Stegmann, J.Y. Wang, E. Gidarkos, Adsorption of Cu(II) ions
from aqueous solutions on biochars prepared from agricultural
by-products, J. Environ. Manage., 96 (2012) 35–42.
- K.R. Thines, E.C. Abdullah, N.M. Mubarak, M. Ruthiraan,
Synthesis of magnetic biochar from agricultural waste biomass
to enhancing route for waste water and polymer application: a
review, Renew. Sustain. Energy Rev., 67 (2017) 257–276.
- X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M.B. McBride,
A.G. Hay, Adsorption of copper and zinc by biochars produced
from pyrolysis of hardwood and corn straw in aqueous solution,
Bioresour. Technol., 102 (2011) 8877–8884.
- M.L. Sanyang, W.A.W.A.K. Ghani, A. Idris, M.B. Ahmad,
Hydrogel biochar composite for arsenic removal from
wastewater, Desal. Wat. Treat., 57 (2016) 3674–3688.
- I. Herath, P. Kumarathilaka, M.I. Al.-Wabel, A. Abduljabbar, M.
Ahmad, A.R.A. Usman, G. Vithanage, Mechanistic modeling
of glyphosate interaction with rice husk derived engineered
biochar, Microporous Mesoporous Mater., 225 (2016) 280–288.
- M. Imamoglu, O. Tekir, Removal of copper(II) and lead(II) ions
from aqueous solutions by adsorption on activated carbon from a
new precursor hazelnut husks, Desalination, 228 (2008) 108–113.
- F.M. Pellera, E. Gidarakos, Effect of dried olive pomace –
derived biochar on the mobility of cadmium and nickel in soil,
J. Environ. Chem. Eng., 3 (2015) 1163–1176.
- Y.K. Kiran, A. Barkat, X. Cui, Y. Feng, F. Pan, L. Tang, X. Yang,
Cow manure and cow manure-derived biochar application
as a soil amendment for reducing cadmium availability and
accumulation by Brassica chinensis L. in acidic red soil, J. Integr.
Agric., 16 (2017) 725–734.
- S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Z. Wang, X.
Li, Biochar prepared from co-pyrolysis of municipal sewage
sludge and tea waste for the adsorption of methylene blue from
aqueous solutions: kinetics, isotherm, thermodynamic and
mechanism, J. Mol. Liq., 220 (2016) 432–441.
- W. Zhang, S. Mao, H. Chen, L. Huang, R.L. Qiu, Pb(II) and Cr(VI)
sorption by biochars pyrolyzed from the municipal wastewater
sludge under different heating conditions, Bioresour. Technol.,
147 (2013) 545–552.
- D.H.K. Reddy, S.M. Lee, K. Seshaiah, Biosorption of toxic
heavy metal ions from water environment using honeycomb
biomass—an industrial waste material, Water Air Soil Pollut.,
223 (2012) 5967–5982.
- H.S. Kambo, A. Dutta, A comparative review of biochar and
hydrochar in terms of production, physico-chemical properties
and applications, Renew. Sustain. Energy Rev., 45 (2015)
359–378.
- L. Hadjittofi, I. Pashalidis, Thorium removal from acidic
aqueous solutions by activated biochar derived from cactus
fibers, Desal. Wat. Treat., 57 (2016) 27864–27868.
- http://www.coaltecenergy.com/biochar/
- C. Rosik-Dulewska, Podstawy gospodarki odpadami,
Wydawnictwo Naukowe PWN, Warszawa, 2010.
- K. Wiedner, C. Rumpel, C. Steiner, A. Pozzi, R. Maas, B. Glaser,
Chemical evaluation of chars produced by thermochemical
conversion (gasification, pyrolysis and hydrothermal
carbonization) of agro-industrial biomass on a commercial
scale, Biomass Bioenergy, 59 (2013) 264–278.
- T. Kan, V. Strezov, T.J. Evans, Lignocellulosic biomass
pyrolysis: a review of product properties and effects of
pyrolysis parameters, Renew. Sustain. Energy Rev., 57 (2016)
1126–1140.
- A. Shah, M.J. Darr, D. Dalluge, D. Medic, K. Webster, R.C.
Brown, Physicochemical properties of bio-oil and biochar
produced by fast pyrolysis of stored single-pass corn stover and
cobs, Bioresour. Technol., 125 (2012) 348–352.
- S.K. Gunatilakea, R. Chandrajith, Removal of Pb(II) from
contaminated water using low-temperature pyrolyzed
agricultural and forest waste biochars: a comparative study,
Desal. Wat. Treat., 62 (2017) 316–324.
- D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Organic and
inorganic contaminants removal from water with biochar,
a renewable, low cost and sustainable adsorbent – a critical
review, Bioresour. Technol., 160 (2014) 191–202.
- C. Wu, V.L. Budarin, M. Wang, V. Sharifi, M.J. Gronnow, Y. Wu,
J. Swithenbank, J.H. Clark, P.T. Williams, CO2 gasification of
bio-char derived from conventional and microwave pyrolysis,
Appl. Energy, 157 (2015) 533–539.
- H. Wikberg, S. Grönqvist, P. Niemi, A. Mikkelson, M. Siika-Aho, H. Kanerva, A. Käsper, T. Tamminen, Hydrothermal
treatment followed by enzymatic hydrolysis and hydrothermal
carbonization as means to valorise agro- and forest-based
biomass residues, Bioresour. Technol., 235 (2017) 70–78.
- M.C. Rillig, M. Wagner, M. Salem, P.M. Antunes, C. George,
H.G. Ramke, M.M. Titirici, M. Antonietti, Material derived
from hydrothermal carbonization: effects on plant growth and
arbuscular mycorrhiza, Appl. Soil Ecol., 45 (2010) 238–242.
- M.A. Martín-Lara, A. Ronda, M.C. Zamora, M. Calero,
Torrefaction of olive tree pruning: effect of operating conditions
on solid product properties, Fuel, 202 (2017) 109–117.
- V. Repellin, A. Govin, M. Rolland, R. Guyonnet, Energy
requirement for fine grinding of torrefied wood, Biomass
Bioenergy, 34 (2010) 923–930.
- S. Malghani, G. Gleixner, S.E. Trumbore, Chars produced by
slow pyrolysis and hydrothermal carbonization vary in carbon
sequestration potential and greenhouse gases emissions, Soil
Biol. Biochem., 62 (2013) 137–146.
- H. Li, X. Dong, B. Evandro, L.M. De Oliveira, Y. Chen, L.Q.
Ma, Mechanisms of metal sorption by biochars: biochar
characteristics and modifications, Chemosphere, 178 (2017)
466–478.
- E. Kim, C. Juang, J. Han, N. Her, C.M. Park, A. Son, Y. Yoon,
Adsorption of selected micropollutants on powdered activated
carbon and biochar in the presence of kaolinite, Desal. Wat.
Treat., 57 (2016) 27601–27613.
- A. Bagreev, T.J. Bandosz, D.C. Locke, Pore structure and surface
chemistry of adsorbents obtained by pyrolysis of sewage
sludge-derived fertilizer, Carbon, 39 (2001) 1971–1979.
- M. Ahmedna, W.E. Marshall, A.A. Husseiny, R.M. Rao, The use
of nutshell carbons in drinking water filters for removal of trace
metals, Water Res., 38 (2004) 1062–1068.
- A.C. Lua, A.T. Yang, J. Guo, Effects of pyrolysis conditions on
the properties of activated carbons prepared from pistachio-nut
shells, J. Anal. Appl. Pyrolysis, 72 (2004) 279–287.
- Z. Tan, C.S. Lin, X. Ji, T.J. Rainey, Returning biochar to fields: a
review, Appl. Soil Ecol., 116 (2017) 1–11.
- D. Rehrah, R.R. Bansode, O. Hassan, M. Ahmedna, Physicochemical
characterization of biochars from solid municipal
waste for use in soil amendment, J. Anal. Appl. Pyrolysis, 118
(2016) 42–53.
- M. Uchimiya, S. Chang, K.T. Klasson, Screening biochars for
heavy metal retention in soil: role of oxygen functional groups,
J. Hazard. Mater., 190 (2011) 432–441.
- T.R. Pacioni, D. Soares, M. Di Domenico, M.F. Rosa, R. De
Fatima, P. Muniz, H.J. Jose, Bio-syngas production from agroindustrial
biomass residues by steam gasification, Waste
Manage., 58 (2016) 221–229.
- A. Enders, K. Hanley, T. Whitman, S. Joseph, J. Lehmann,
Characterization of biochars to evaluate recalcitrance and
agronomic performance, Bioresour. Technol., 11 (2012) 644–653.
- C. Tan, Z. Yaxin, W. Hongtao, J. Wenjing, Z. Zeyu, Z. Yuancheng,
R. Lulu, Influence of pyrolysis temperature on characteristics
and heavy metal adsorptive performance of biochar derived
from municipal sewage sludge, Bioresour. Technol., 164 (2014)
47–54.
- J.H. Yuan, R.K. Xu, H. Zhang, The forms of alkalis in the
biochar produced from crop residues at different temperatures,
Bioresour. Technol., 102 (2011) 3488–3497.
- R.B. Fidel, D.A. Laird, M.L. Thompson, M. Lawrinenko,
Characterization and quantification of biochar alkalinity,
Chemosphere, 167 (2017) 367–373.
- L. Beesley, E. Moreno-Jiménez, J.L. Gomez-Eyles, Effects of
biochar and greenwaste compost amendments on mobility,
bioavailability and toxicity of inorganic and organic
contaminants in a multi-element polluted soil, Environ. Pollut.,
158 (2010) 2282–2287.
- K. Radhakrishnan, L. Sethurman, R. Panjanathan, A. Natarajan,
V. Solaiappan, W.R. Thilagaraj, Biosorption of heavy metals
from actual electroplating in fixed bed column, Desal. Wat.
Treat., 57 (2016) 3572–3587.
- D. Kołodyńska, J. Krukowska, P. Thomas, Comparison of
sorption and desorption studies of heavy metal ions from
biochar and commercial active carbon, Chem. Eng. J., 307 (2017)
353–363.
- J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune,
D.C. Seo, Competitive adsorption of heavy metals onto sesame
straw biochar in aqueous solutions, Chemosphere, 142 (2016)
77–83.
- T. Sizmur, T. Fresno, G. Akgül, H. Frost, E. Moreno-Jiménez,
Biochar modification to enhance sorption of inorganics from
water, Bioresour. Technol., 246 (2017) 34–47. doi:10.1016/j.
biortech.2017.07.082
- I.M. Lima, A.A. Boateng, K.T. Klasson, Physicochemical and
adsorptive properties of fast-pyrolysis bio-chars and their
steam activated counterparts, J. Chem. Technol. Biotechnol., 85
(2010) 1515–1521.
- W. Ding, X. Dong, I.M. Ime, B. Gao, L.Q. Ma, Pyrolytic
temperatures impact lead sorption mechanisms by bagasse
biochars, Chemosphere, 105 (2014) 68–74.
- H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Relative
distribution of Pb2+ sorption mechanisms by sludge-derived
biochar, Water Res., 46 (2012) 854–862.
- Y. Xiao, Y. Xue, F. Gao, A. Mosa, Sorption of heavy metal ions
onto crayfish shell biochar: effect of pyrolysis temperature,
pH and ionic strength, J. Taiwan Inst. Chem. Eng., 80 (2017)
114–121.
- S. Batool, M. Idrees, Q. Hussain, J. Kong, Adsorption of
copper(II) by using derived-farmyard and poultry manure
biochars: efficiency and mechanism, Chem. Phys. Lett., 689
(2017) 190–198.
- M. Inyang, E. Dickenson, The potential role of biochar in the
removal of organic and microbial contaminants from potable
and reuse water: a review, Chemosphere, 134 (2015) 232–240.
- J. Li, Y. Li, Y. Wu, M. Zheng, A comparison of biochars from
lignin, cellulose and wood as the sorbent to an aromatic
pollutant, J. Hazard. Mater., 280 (2014) 450–457.
- C. Chen, W. Zhou, D. Lin, Sorption characteristics of
N-nitrosodimethylamine onto biochar from aqueous solution,
Bioresour. Technol., 179 (2015) 359–366.
- P. Zhang, H. Sun, L. Yu, T. Sun, Adsorption and catalytic
hydrolysis of carbaryl and atrazine on pig manure-derived
biochars: impact of structural properties of biochars, J. Hazard.
Mater., 244–245 (2013) 217–224.
- S. Mondal, K. Aikat, G. Halder, Biosorptive uptake of ibuprofen
by chemically modified Parthenium hysterophorus derived
biochar: equilibrium, kinetics, thermodynamics and modeling,
Ecol. Eng., 92 (2016) 158–172.
- H.R. Buser, T. Poiger, M.D. Muller, Occurrence and
environmental behavior of the chiral pharmaceutical drug
ibuprofen in surface waters and in wastewater, Environ. Sci.
Technol., 33 (1999) 2529–2535.
- P. Nautiyal, K.A. Subramanian, M.G. Dastidar, Adsorptive
removal of dye using biochar derived from residual algae after
in-situ transesterification: alternate use of waste of biodiesel
industry, J. Environ. Manage., 182 (2016) 187–197.
- S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Removal
of methylene blue from aqueous solution by sewage
sludge-derived biochar: adsorption kinetics, equilibrium,
thermodynamics and mechanism, J. Environ. Chem. Eng., 5
(2017) 601–611.
- R.K. Xu, S. Xiao, J.H. Yuan, A.Z. Zhao, Adsorption of methyl
violet from aqueous solutions by the biochars derived from
crop residues, Bioresour. Technol., 102 (2011) 10293–10298.
- X. Zhang, B. Gao, Y. Zheng, X. Hu, A. Elise, M.D. Annable,
Y. Li, Biochar for volatile organic compound (VOC) removal:
sorption performance and governing mechanisms, Bioresour.
Technol., 245 (2017) 606–614.
- N. Karakoyun, S. Kubilay, N. Aktas, O. Turhan, M. Kasimoglu,
S. Yilmaz, N. Sahiner, Hydrogel-biochar composites for
effective organic contaminant removal from aqueous media,
Desalination, 280 (2011) 319–325.
- A.U. Rajapaksha, S.S. Chen, D.W. Tsang, M. Zhang, M.
Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok, Engineered/designer biochar for contaminant removal/immobilization
from soil and water: potential and implication of biochar
modification, Chemosphere, 148 (2016) 276–291.
- P. Devi, A.K. Saroha, Synthesis of the magnetic biochar
composites for use as an adsorbent for the removal of
pentachlorophenol from the effluent, Bioresour. Technol., 169
(2014) 525–531.
- P. Devi, A.K. Saroha, Simultaneous adsorption and
dechlorination of pentachlorophenol from effluent by Ni-ZVI
magnetic biochar composites synthesized from paper mill
sludge, Chem. Eng. J., 271 (2015) 195–203.
- D. Kołodyńska, J. Bąk, M. Kozioł, L.V. Pylypchuk, Investigations
of heavy metal ion sorption using nanocomposites of ironmodified
biochar, Nanoscale Res. Lett., 12 (2017) 433–446.
- S. Mandal, B. Sarkar, N. Bolan, Y.S. Ok, R. Naidu, Enhancement
of chromate reduction in soils by surface modified biochar, J. Environ. Manage., 186 (2016) 277–284.
- Y. Zhou, B. Gao, A.R. Zimmerman, H. Chen, M. Zhang, X.
Cao, Biochar-supported zerovalent iron for removal of various
contaminants from aqueous solutions, Bioresour. Technol., 152
(2014) 538–542.
- Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao,
Sorption of heavy metals on chitosan-modified biochars and its
biological effects, Chem. Eng. J., 231 (2013) 512–518.
- X. Cui, X. Dai, K.Y. Khan, T. Li, X. Yang, Z. He, Removal of
phosphate from aqueous solution using magnesium-alginate/
chitosan modified biochar microspheres derived from Thalia
dealbata, Bioresour. Technol., 218 (2016) 1123–1132.