References
- K.V.G. Ravikumar, D. Kumar, G. Kumar, P. Mrudula, C.
Natarajan, A. Mukherjee, Enhanced Cr(VI) removal by nanozerovalent
iron-immobilized alginate beads in the presence of
a biofilm in a continuous-flow reactor, Ind. Eng. Chem. Res., 55
(2016) 5973–5982.
- S. Majumder, V. Gupta, S. Raghuuanshi, S. Gupta, Simultaneous
sequestration of ternary metal ions (Cr6+, Cu2+, and Zn2+)
from aqueous solution by an indigenous bacterial consortium,
Process Saf. Environ., 102 (2016) 786–798.
- H.J. Gibb, P.S. Lees, P.F. Pinsky, B.C. Rooney, Lung cancer
among workers in chromium chemical production, Am. J. Ind.
Med., 38 (2000) 115–126.
- S. Raghuuanshi, S. Gupta, S. Majumder, Biodegradation kinetics
of Cr(VI) by acclimated mixed culture, Res. J. Chem. Environ.,
15 (2011) 181–184.
- S. Majumder, S. Raghuuanshi, S. Gupta, Estimation of kinetic
parameters for bioremediation of Cr(VI) from wastewater
using Pseudomonas taiwanensis, an isolated strain from
enriched mixed culture, Bioremediation, 18 (2014) 236–247.
- Y.Y. Gong, L.S. Gai, J.C. Tang, J. Fu, Q.L. Wang, E.Y. Zeng,
Reduction of Cr(VI) in simulated groundwater by FeS-coated
iron magnetic nanoparticles, Sci. Total Environ., 595 (2017)
743–751.
- B. Pakzadeh, J.R. Batista, Chromium removal from ion-exchange
waste brines with calcium polysulfide, Water Res., 45
(2011) 3055–3064.
- S. Majumder, S. Gupta, Removal of Cr(VI) from wastewater
using a natural nanoporous adsorbent: Experimental, kinetic
and optimization studies, Adsorpt. Sci. Technol., 33 (2015)
71–88.
- A. Agrawal, V. Kumar, B.D. Pandey, Remediation opinions for
the treatment of electroplating and leather tanning effluent
containing chromium–A review, Miner. Process. Extr. M., 27
(2006) 99–130.
- N.K. Chandra Babu, K. Asma, A. Raghupathi, R. Venba, R.
Ramesh, S. Sadulla, Screening of leather auxiliaries for their
role in toxic hexavalent chromium formation in leatherdposing
potential health hazards to the users, J. Clean. Pro., 13
(2005) 1189–1195.
- B.H. Xie, C. Shan, Z. Xu, X.C. Li, X.L. Zhang, J.J. Chen, B.C.
Pan, One-step removal of Cr(VI) at alkaline pH by UV/sulfite
process: Reduction to Cr(III) and in situ Cr(III) precipitation,
Chem. Eng. J., 308 (2017) 791–797.
- S. Gupta, A. Yadav, N. Verma, Synthesis of silicon carbide-derived
carbon as an electrode of a microbial fuel cell and an
adsorbent of aqueous Cr(VI), Ind. Eng. Chem. Res., 56 (2017)
1233–1244.
- L. Ying, C. Cheng, Z. Jing, Y. Lan, Catalytic role of Cu (II) in
the reduction of Cr(VI) by citric acid under an irradiation of
simulated solar light, Chemosphere, 127 (2015) 87–92.
- D.L. Sedlak, P.G. Chan, Reduction of hexavalent chromium by
ferrous iron, Geochim. Cosmochim. Acta., 61 (1997) 2185–2192.
- U. Maheshwari, S. Gupta, Performance evaluation of activated
neem bark for the removal of Zn (II) and Cu (II) along with
other metal ions from aqueous solution and synthetic pulp &
paper industry effluent using fixed-bed reactor, Process Saf.
Environ., 102 (2016) 547–557.
- S.K. Prabhakaran, K. Vijayaraghavan, R. Balasubramanian,
Removal of Cr(VI) ions by spent tea and coffee dusts: Reduction
to Cr(III) and biosorption, Ind. Eng. Chem. Res., 48 (2009)
2113–2117.
- U. Maheshwari, S. Gupta, Removal of Cr(VI) from wastewater
using activated neem bark in a fixed-bed column: Interference
of other ions and kinetic modelling studies, Desal. Water
Treat., 57 (2016) 8514–8525.
- N.K. Hamadi, X.D. Chen, M.M. Farid, Adsorption kinetics for
the removal of chromium (VI) from aqueous solution by adsorbents
derived from used tires and sawdust, J. Chem. Eng., 84
(2001) 95–105.
- D. Mohan, K.P. Singh, V.K. Singh, Removal of hexavalent chromium
from aqueous solution using low-cost activated carbons
derived from agricultural waste materials and activated carbon
fabric cloth, J. Ind. Eng. Chem. Res., 44 (2005) 1027–1042.
- K. Rastogi, J.N. Sahu, B.C. Meikap, M.N. Biswas, Removal of
methylene blue from wastewater using fly ash as an adsorbent
by hydrocyclone, J. Hazard Mater., 158 (2008) 531–540.
- E. Smith, K. Ghiassi, Chromate removal by an iron sorbent:
mechanism and modeling, Water Environ. Res., 78 (2006)
84–93.
- M. Bhaumik, H.J. Choi, M.P. Seopela, R.I. McCrindle, A. Maity,
Highly effective removal of toxic Cr(VI) from wastewater
using sulfuric acid-modified avocado seed, Ind. Eng. Chem.
Res., 53 (2014) 1214–1224.
- P. Janoš, V. Hůla, P. Bradnová, V. Pilařová, J. Šedlbauer, Reduction
and immobilization of hexavalent chromium with coaland
humate-based sorbents, Chemosphere, 75 (2009) 732–738.
- F. Glorias-Garcia, J.M. Arriaga-Merced, G. Roa-Morales, V.
Varela-Guerrero, C.E. Barrera-Díaz, B. Bilyeu, Fast reduction of
Cr(VI) from aqueous solutions using alumina, Ind. Eng. Chem.
Res., 20 (2014) 2477–2483.
- U. Maheshwari, S. Gupta, A novel method to identify optimized
parametric values for adsorption of heavy metals from
waste water, J. Water Process Eng., 9 (2016) 21–26.
- S.L. Brauer, K.E. Wetterhahn, Chromium (VI) forms a thiolate
complex with glutathione, J. Am. Chem. Soc., 113 (1991) 3001–
3007.
- C.L. Parsons, Mineral wastes: The chemists’ opportunity, J.
Ind. Eng. Chem., 4 (1912) 125–131.
- X.C. Qiao, P. Si, J.G. Yu, A systematic investigation into the
extraction of aluminum from coal spoil through kaolinite,
Environ. Ssc. Technol., 42 (2008) 8541–8546.
- A. Ummadisingu, S. Gupta, Characteristics and kinetic study
of chitosan prepared from seafood industry waste for oil spills
cleanup, Desal. Water Treat., 44 (2012) 44–51.
- U. Maheshwari, B. Mathesan, S. Gupta, Efficient adsorbent for
simultaneous removal of Cu (II), Zn (II), and Cr(VI): Kinetic,
thermodynamics and mass transfer mechanism, Process Saf.
Environ., 98 (2015) 198–210.
- V.V. Stanislav, M.D.T. Juan, Methods for characterization of
inorganic and mineral matter in coal: A critical overview,
Energy Fuels., 17 (2003) 271–281.
- P.D. Deborah, K. Heike, G.Á. Leticia, V.I.J. Alberto, G. Elvio,
A.B. Carlos, Organic matter in constructed soils from a coal
mining area in southern Brazil, Org. Geo., 37 (2006) 1537–1545.
- J. Wollenweber, J. Schwarzbauer, R. Littke, H. Wilkes, A. Armstroff,
B. Horsfield, Characterization of non-extractable macromolecular
organic matter in Paleozoic coals, Paleogeography,
Paleoclimatology, Paleoecology, 240 (2006) 275–304.
- M. Erdem, F. Gür, F. Tümen, Cr(VI) reduction in aqueous solutions
by siderite, J. Hazard Mater. B., 113 (2004) 217–222.
- M. Chrysochoou, A. Ting, A kinetic study of Cr(VI) reduction
by calcium polysulfide, Sci. Total Environ., 409 (2011) 4072–
4077.
- C. Kantar, M.S. Bulbul, Effect of pH-buffering on Cr(VI) reduction
with pyrite in the presence of various organic acids: Continuous-flow experiments, Chem. Eng. J., 287 (2016) 173–180.
- M. Erdem, H.S. Altundogan, A. Ozer, F. Tumen, Cr(VI) reduction
in aqueous solutions by using synthetic iron sulphide,
Environ. Technol., 22 (2001) 1213–1222.
- C. Kantar, M.S. Bulbul, Effect of pH-buffering on Cr(VI) reduction
with pyrite in the presence of various organic acids: Continuous-flow experiments, Chem. Eng. J., 287 (2016) 173–180.
- C.R. Ward, Analysis and significance of mineral matter in coal
seams, Int. J. Coal Geo, 50 (2002) 135–168.