References

  1. T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel, Physico-chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118 (2006) 83–98.
  2. M. Wu, J. Liang, J. Tang, G. Li, S. Shan, Z. Guo, L. Deng, Decontamination of multiple heavy metals-containing effluents through microbial biotechnology, J. Hazard. Mater., 337 (2017) 189–197.
  3. F.P. Camargo, P.S. Tonello, A.C.A. dos Santos, I.C.S. Duarte, Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments–a review, Water Air Soil Poll., 227 (2016) No. 433.
  4. E. Bazrafshan, A.A. Zarei, F.K. Mostafapour, Biosorption of cadmium from aqueous solutions by Trichoderma fungus: kinetic, thermodynamic, and equilibrium study, Desal. Water Treat., 57 (2016) 14598–14608.
  5. F.G. Acien, C. Gomez-Serrano, M.M Morales-Amaral, J.M. Fernandez-Sevilla, E. Molina-Grima, Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment, Appl. Microbiol. Biot., 100 (2016) 9013–9022.
  6. K. Kipigroch, M. Janosz-Rajczyk, B. Skowron-Grabowska, The use of algae in the removal of Cd and Cu in the process of wastewater recovery, Desal. Water Treat., 57 (2016) 1508–1514.
  7. A. Sahmurova, N. Balkaya, Enteromorpha compressa macroalgae as biosorbent for heavy metal removal: a preliminary economical evaluation, Desal. Water Treat., 57 (2016) 2597–2603.
  8. A. Parzych, Z. Sobisz, M. Cymer, Preliminary research of heavy metals content in aquatic plants taken from surface water (Northern Poland), Desal. Water Treat., 57 (2016) 1451– 1461.
  9. Y. Wang, S.-H. Ho, C.-L. Cheng, W.-Q. Guo, D. Nagarajan, N.-Q. Ren, D.-J. Lee, J.-S. Chang, Perspectives on the feasibility of using microalgae for industrial wastewater treatment, Bioresource Technol., 222 (2016) 485–497.
  10. R. Flouty, Effect of environmental conditions on bio uptake of Cu and Pb from natural freshwaters by Chlamydomonas reinhardtii: a case study, Litani River, Lebanon, Desal. Water Treat., 57 (2016) 24498–24508.
  11. S. Asgarzadeh, R. Rostamian, E. Faez, A. Maleki, H. Daraei, Biosorption of Pb(II), Cu(II), and Ni(II) ions onto novel low cost P. eldarica leaves-based biosorbent: isotherm, kinetics, and operational parameters investigation, Desal. Water Treat., 57 (2016) 14544–14551.
  12. M.M. Brzóska, J. Rogalska, E. Kupraszewicz, The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: A study in a rat model of moderate and relatively high human exposure, Toxicol. Appl. Pharm., 250 (2011) 327–335.
  13. S. Nemmiche, D. Chabane-Sari, M. Kadri, P. Guiraud, Cadmium chloride-induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion, Toxicol. In Vitro., 25 (2011) 191–198
  14. J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv., 27 (2009) 195–226.
  15. Y.-H. Wang, S.-H. Lin, R.-S. Juang, Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents, J. Hazard. Mater., 102 (2003) 291–302.
  16. B. Sun, Z.T. Mi, G. An, G. Liu, J.J. Zou, Preparation of biomimetic materials made from polyaspartyl polymer and chitosan for heavy-metal removal, Ind. Eng. Chem. Res., 48 (2009) 9823–9829.
  17. D. Mohan, Jr C.U. Pittman, Arsenic removal from water/ wastewater using adsorbents—A critical review, J. Hazard. Mater., 142 (2007) 1–53.
  18. B. Sun, Z.T. Mi, G. An, G. Liu, Binding of several heavy metal ions by polyaspartyl polymers and their application to some Chinese herbal medicines, J. Appl. Polym. Sci., 106 (2007) 2736–2745.
  19. P. Atkins, J. De Paula, Physical Chemistry, 8th ed. Oxford University Press, Oxford, 2006, pp. 200–215
  20. L. Taiz, E. Zeiger, Plant Physiology, 3rd ed. Sinauer Associates, Inc. Sunderland, MA, 2002, pp. 67−75, 272−275.
  21. P. Raven, G. Johnson, Biology, 6th ed. McGraw-Hill Science, New York, NY, 2001, pp. 777−792.
  22. B. Sun, H. Zhai, L.-B. Zhang, C.-X. Zhang, X.-S. Wu, Removal of trace arsenic based on biomimetic separation, Ind. Eng. Chem. Res., 54 (2015) 396–403.
  23. K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease, Toxicology, 283 (2011) 65–87.
  24. B. Messner, D. Bernhard, Cadmium and cardiovascular diseases: cell biology, patho physiology, and epidemiological relevance, Biometals., 23 (2010) 811–822.
  25. M. Dary, M.A. Chamber-Pérez, A.J. Palomares, E. Pajuelo, “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizo bacteria, J. Hazard. Mater., 177 (2010) 323– 330.
  26. N. Suchkova, E. Darakas, J. Ganoulis, Phytoremediation as a prospective method for rehabilitation of areas contaminated by long-term sewage sludge storage: A Ukrainian–Greek case study, Ecol. Eng., 36 (2010) 373–378.
  27. C. Lomonte, D. Gregory, A.J.M, Baker, S.D. Kolev, Comparative study of hotplate wet digestion methods for the determination of mercury in biosolids, Chemosphere, 72 (2008) 1420–1424.
  28. C. Yafa, J.G. Farmer, A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry, Anal. Chim. Acta, 557 (2006) 296–303.
  29. D. Gasparatos, C. Haidouti, A comparison of wet oxidation methods for determination of total phosphorus in soils, J. Plant Nutr. Soil Sci., 164 (2001) 435−439.
  30. K. Higuchi, A. Saito, Y. Mikami, E. Miwa, Modulation of macro nutrient metabolism in barley leaves under iron-deficient condition, Soil Sci. Plant Nutr., 57 (2011) 233–247.
  31. V. Fernández, T. Eichert, V.D. Río, G. López-Casado, J.A. Heredia-Guerrero, A. Abadía, A. Heredia, J. Abadía, Leaf structural changes associated with iron deficiency chlorosis in fieldgrown pear and peach: physiological implications, Plant Soil, 311 (2008) 161–172.
  32. R. Belkhodja, F. Morales, M. Sanz, A. Abadía, J. Abadía, Iron deficiency in peach trees: effects on leaf chlorophyll and nutrient concentrations in flowers and leaves, Plant Soil, 203 (1998) 257–268.
  33. V.G. Ladygin, Changes in the biochemical composition, structure, and function of pea leaf chloroplasts in iron deficiency and root anoxia, Appl. Biochem. Micro., 40 (2004) 506–516.
  34. M.J. Hawkesford, L.J. De Kok, Managing sulphur metabolism in plants, Plant Cell Environ., 29 (2006) 382–395.
  35. J.G. Speight, Lange’s Handbook of Chemistry, 16th ed. McGraw-Hill, Inc., New York, 2005, p. 1333−1342.
  36. B Sun, H.-Y. Tian, C.-X. Zhang, G. An, Preparation of biomimetic-bone materials and their application to the removal of heavy metals, AIChE J., 59 (2013) 229–240.
  37. G.D. Christian. Analytical Chemistry, 6th ed. John Wiley & Sons, Inc., New York, 2004, p. 243–248, 298–303, 313–334, 339–352.
  38. R.Z. LeGeros, R. Kijkowska, C. Bautista, J.P. Legeros, Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites, Connect. Tissue Res., 33 (1995) 203–209.
  39. A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani, M.P. McHenry Potential use of algae for heavy metal bioremediation, a critical review, J. Environ. Manage., 181 (2016) 817–831.
  40. H. Asnaoui, M. Khalis, Determination of diffusion parameters and biosorption of cadmium in aqueous solution using algae biomass, Sep. Sci. Technol., 52 (2017) 13–20.
  41. B. Henriques, L.S. Rocha, C.B. Lopes, P. Figueira, A.C Duarte, C. Vale, M.A. Pardal, E. Pereira, A macroalgae-based biotechnology for water remediation: Simultaneous removal of Cd, Pb and Hg by living Ulva lactuca, J. Environ. Manage., 191 (2017) 275–289.
  42. S.J. Joris, C.H. Amberg, The nature of deficiency in nonstoichiometric hydroxyapatites. II: spectroscopic studies of calcium and strontium hydroxyapatites, J. Phys. Chem., 75 (1971) 3172–3178.
  43. W.W. Simons, The Sadtler handbook of infrared spectra. Bio-Rad Laboratories, Inc., Informatics Division, Philadelphia, 2004, pp. 118, 145–147.