References
- T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel, Physico-chemical
treatment techniques for wastewater laden with heavy
metals, Chem. Eng. J., 118 (2006) 83–98.
- M. Wu, J. Liang, J. Tang, G. Li, S. Shan, Z. Guo, L. Deng, Decontamination
of multiple heavy metals-containing effluents
through microbial biotechnology, J. Hazard. Mater., 337 (2017)
189–197.
- F.P. Camargo, P.S. Tonello, A.C.A. dos Santos, I.C.S. Duarte,
Removal of toxic metals from sewage sludge through chemical,
physical, and biological treatments–a review, Water Air
Soil Poll., 227 (2016) No. 433.
- E. Bazrafshan, A.A. Zarei, F.K. Mostafapour, Biosorption of
cadmium from aqueous solutions by Trichoderma fungus:
kinetic, thermodynamic, and equilibrium study, Desal. Water
Treat., 57 (2016) 14598–14608.
- F.G. Acien, C. Gomez-Serrano, M.M Morales-Amaral, J.M. Fernandez-Sevilla, E. Molina-Grima, Wastewater treatment using
microalgae: how realistic a contribution might it be to significant
urban wastewater treatment, Appl. Microbiol. Biot., 100
(2016) 9013–9022.
- K. Kipigroch, M. Janosz-Rajczyk, B. Skowron-Grabowska,
The use of algae in the removal of Cd and Cu in the process
of wastewater recovery, Desal. Water Treat., 57 (2016)
1508–1514.
- A. Sahmurova, N. Balkaya, Enteromorpha compressa macroalgae
as biosorbent for heavy metal removal: a preliminary
economical evaluation, Desal. Water Treat., 57 (2016)
2597–2603.
- A. Parzych, Z. Sobisz, M. Cymer, Preliminary research of
heavy metals content in aquatic plants taken from surface
water (Northern Poland), Desal. Water Treat., 57 (2016) 1451–
1461.
- Y. Wang, S.-H. Ho, C.-L. Cheng, W.-Q. Guo, D. Nagarajan, N.-Q.
Ren, D.-J. Lee, J.-S. Chang, Perspectives on the feasibility of
using microalgae for industrial wastewater treatment, Bioresource
Technol., 222 (2016) 485–497.
- R. Flouty, Effect of environmental conditions on bio uptake
of Cu and Pb from natural freshwaters by Chlamydomonas
reinhardtii: a case study, Litani River, Lebanon, Desal. Water
Treat., 57 (2016) 24498–24508.
- S. Asgarzadeh, R. Rostamian, E. Faez, A. Maleki, H. Daraei,
Biosorption of Pb(II), Cu(II), and Ni(II) ions onto novel low
cost P. eldarica leaves-based biosorbent: isotherm, kinetics,
and operational parameters investigation, Desal. Water Treat.,
57 (2016) 14544–14551.
- M.M. Brzóska, J. Rogalska, E. Kupraszewicz, The involvement
of oxidative stress in the mechanisms of damaging cadmium
action in bone tissue: A study in a rat model of moderate and
relatively high human exposure, Toxicol. Appl. Pharm., 250
(2011) 327–335.
- S. Nemmiche, D. Chabane-Sari, M. Kadri, P. Guiraud, Cadmium
chloride-induced oxidative stress and DNA damage in
the human Jurkat T cell line is not linked to intracellular trace
elements depletion, Toxicol. In Vitro., 25 (2011) 191–198
- J. Wang, C. Chen, Biosorbents for heavy metals removal and
their future, Biotechnol. Adv., 27 (2009) 195–226.
- Y.-H. Wang, S.-H. Lin, R.-S. Juang, Removal of heavy metal ions
from aqueous solutions using various low-cost adsorbents,
J. Hazard. Mater., 102 (2003) 291–302.
- B. Sun, Z.T. Mi, G. An, G. Liu, J.J. Zou, Preparation of biomimetic
materials made from polyaspartyl polymer and chitosan
for heavy-metal removal, Ind. Eng. Chem. Res., 48 (2009)
9823–9829.
- D. Mohan, Jr C.U. Pittman, Arsenic removal from water/
wastewater using adsorbents—A critical review, J. Hazard.
Mater., 142 (2007) 1–53.
- B. Sun, Z.T. Mi, G. An, G. Liu, Binding of several heavy metal
ions by polyaspartyl polymers and their application to some
Chinese herbal medicines, J. Appl. Polym. Sci., 106 (2007)
2736–2745.
- P. Atkins, J. De Paula, Physical Chemistry, 8th ed. Oxford University
Press, Oxford, 2006, pp. 200–215
- L. Taiz, E. Zeiger, Plant Physiology, 3rd ed. Sinauer Associates,
Inc. Sunderland, MA, 2002, pp. 67−75, 272−275.
- P. Raven, G. Johnson, Biology, 6th ed. McGraw-Hill Science,
New York, NY, 2001, pp. 777−792.
- B. Sun, H. Zhai, L.-B. Zhang, C.-X. Zhang, X.-S. Wu, Removal of
trace arsenic based on biomimetic separation, Ind. Eng. Chem.
Res., 54 (2015) 396–403.
- K. Jomova, M. Valko, Advances in metal-induced oxidative
stress and human disease, Toxicology, 283 (2011) 65–87.
- B. Messner, D. Bernhard, Cadmium and cardiovascular diseases:
cell biology, patho physiology, and epidemiological relevance,
Biometals., 23 (2010) 811–822.
- M. Dary, M.A. Chamber-Pérez, A.J. Palomares, E. Pajuelo, “In
situ” phytostabilisation of heavy metal polluted soils using
Lupinus luteus inoculated with metal resistant plant-growth
promoting rhizo bacteria, J. Hazard. Mater., 177 (2010) 323–
330.
- N. Suchkova, E. Darakas, J. Ganoulis, Phytoremediation as a
prospective method for rehabilitation of areas contaminated
by long-term sewage sludge storage: A Ukrainian–Greek case
study, Ecol. Eng., 36 (2010) 373–378.
- C. Lomonte, D. Gregory, A.J.M, Baker, S.D. Kolev, Comparative
study of hotplate wet digestion methods for the determination
of mercury in biosolids, Chemosphere, 72 (2008) 1420–1424.
- C. Yafa, J.G. Farmer, A comparative study of acid-extractable
and total digestion methods for the determination of inorganic
elements in peat material by inductively coupled plasma-optical
emission spectrometry, Anal. Chim. Acta, 557 (2006)
296–303.
- D. Gasparatos, C. Haidouti, A comparison of wet oxidation
methods for determination of total phosphorus in soils, J. Plant
Nutr. Soil Sci., 164 (2001) 435−439.
- K. Higuchi, A. Saito, Y. Mikami, E. Miwa, Modulation of macro
nutrient metabolism in barley leaves under iron-deficient condition,
Soil Sci. Plant Nutr., 57 (2011) 233–247.
- V. Fernández, T. Eichert, V.D. Río, G. López-Casado, J.A. Heredia-Guerrero, A. Abadía, A. Heredia, J. Abadía, Leaf structural
changes associated with iron deficiency chlorosis in fieldgrown
pear and peach: physiological implications, Plant Soil,
311 (2008) 161–172.
- R. Belkhodja, F. Morales, M. Sanz, A. Abadía, J. Abadía, Iron
deficiency in peach trees: effects on leaf chlorophyll and nutrient
concentrations in flowers and leaves, Plant Soil, 203 (1998)
257–268.
- V.G. Ladygin, Changes in the biochemical composition,
structure, and function of pea leaf chloroplasts in iron deficiency
and root anoxia, Appl. Biochem. Micro., 40 (2004)
506–516.
- M.J. Hawkesford, L.J. De Kok, Managing sulphur metabolism
in plants, Plant Cell Environ., 29 (2006) 382–395.
- J.G. Speight, Lange’s Handbook of Chemistry, 16th ed. McGraw-Hill, Inc., New York, 2005, p. 1333−1342.
- B Sun, H.-Y. Tian, C.-X. Zhang, G. An, Preparation of biomimetic-bone materials and their application to the removal of
heavy metals, AIChE J., 59 (2013) 229–240.
- G.D. Christian. Analytical Chemistry, 6th ed. John Wiley & Sons,
Inc., New York, 2004, p. 243–248, 298–303, 313–334, 339–352.
- R.Z. LeGeros, R. Kijkowska, C. Bautista, J.P. Legeros, Synergistic
effects of magnesium and carbonate on properties of biological
and synthetic apatites, Connect. Tissue Res., 33 (1995)
203–209.
- A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani,
M.P. McHenry Potential use of algae for heavy metal
bioremediation, a critical review, J. Environ. Manage., 181
(2016) 817–831.
- H. Asnaoui, M. Khalis, Determination of diffusion parameters
and biosorption of cadmium in aqueous solution using algae
biomass, Sep. Sci. Technol., 52 (2017) 13–20.
- B. Henriques, L.S. Rocha, C.B. Lopes, P. Figueira, A.C Duarte,
C. Vale, M.A. Pardal, E. Pereira, A macroalgae-based biotechnology
for water remediation: Simultaneous removal of Cd, Pb
and Hg by living Ulva lactuca, J. Environ. Manage., 191 (2017)
275–289.
- S.J. Joris, C.H. Amberg, The nature of deficiency in nonstoichiometric
hydroxyapatites. II: spectroscopic studies of calcium and
strontium hydroxyapatites, J. Phys. Chem., 75 (1971) 3172–3178.
- W.W. Simons, The Sadtler handbook of infrared spectra. Bio-Rad Laboratories, Inc., Informatics Division, Philadelphia,
2004, pp. 118, 145–147.