References

  1. S. Le Borgne, D. Paniagua, R. Vazquez-Duhalt, Biodegradation of organic pollutants by halophilic bacteria and archaea. J. Mol. Microbiol. Biotechnol., 15 (2008) 74–92.
  2. E. Singlande, Procédés intégrés couplant l’électrodialyse et le traitement biologique: Influence de la composition ionique et application aux effluents salins, Dissertation, University of Toulouse III, (2006).
  3. F. Kargi, A. Dinçer, Salt inhibition effects in biological treatment of saline wastewater in RBC, J. Environ. Eng., 125 (1999) 966–971.
  4. F. Kargi, A. Dincer, Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation, Enzym. Microl. Technol., 19 (1996) 529–537.
  5. N. Gharsallah, L. Khannous, N. Souissi, M. Nasri, Biological treatment of saline wastewaters from marine-products processing factories by a fixed-bed reactor, J. Chem. Technol. Biotechnol., 77 (2002) 865–870.
  6. C.Y. Wang, C.C. Ng, W.S. Tzeng, Y.T. Shyu, Marinobacter szutsaonensis sp. nov., isolated from a solar saltern, Int. J. Syst. Evol. Microbiol., 59 (2009) 2605–2609.
  7. R. Margesin, F. Schinner, Potential of halotolerant and halophilic microorganisms for biotechnology, Extremophiles, 5 (2001) 73–83.
  8. C. Sánchez-Porro, S. Martín, E. Mellado, A. Ventosa, Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes, J. Environ. Eng., 94 (2003) 295–300.
  9. L.C. Castillo-Carvajal, J.L. Sanz-Martín, B.E. Barragán-Huerta, Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: A review, Environ. Sci. Pollut. Res., 16 (2014) 9578–9588.
  10. A.R. Dinçer, F. Kargi, Performance of rotating biological disc system treating saline wastewater. Process Biochem., 36 (2001) 901–906.
  11. L. Mariángel, E. Aspé, M. Cristina Martí, M. Roeckel, The effect of sodium chloride on the denitrification of saline fishery wastewaters, Environ. Technol., 29 (2008) 871–879.
  12. M. Kubo, J. Hiroe, M. Murakami, H. Fukami, T. Tachiki, Treatment of hypersaline-containing wastewater with salt-tolerant microorganisms. J. Biosci. Bioeng., 91 (2001) 222–224.
  13. S. Kumar, R. Karan, S. Kapoor, S.P. Singh, S.K. Khare, Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz. J. Microbiol., 43 (2012) 1595–1603.
  14. M.J. Coronado, C. Vargas, J. Hofemeister, A. Ventosa, J.J. Nieto, Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol. Lett., 183 (2000) 67–71.
  15. A. Ventosa, J.J. Nieto, A. Oren, Biology of aerobic moderately halophilic bacteria, Appl. Microbiol. Biotechnol., 62 (1998) 504– 544.
  16. M.L. Moreno, D. Pérez, M.T. García, E. Mellado, Halophilic bacteria as a source of novel hydrolytic enzymes, Life, 3 (2013) 38–51.
  17. A. Ventosa, C. Sánchez-Porro, S. Martín, E. Mellado, Halophilic archaea and bacteria as a source of extracellular hydrolytic enzymes, In: N. Gunde-Cimerman, A. Oren, A. Plemenitas, Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer Publications, Germany, (2005) 337–354.
  18. A. Oren, Industrial and environmental applications of halophilic microorganisms, Environ. Technol., 31 (2010) 825–834.
  19. S.D. Schreck, A.M. Grunden, Biotechnological applications of halophilic lipases and thioesterases, Appl. Microbiol. Biotechnol., 98 (2014) 1011–1021.
  20. A.D. Eaton, L.S. Clesceri, E.W. Rice, A.E. Greenberg, M.A.H. Franson, Standard methods for the examination of water and wastewater, American Public Health Association, Washington, (2005).
  21. P. Reuschenbach, U. Pagga, U. Strotmann, A critical comparison of respirometric biodegradation tests based on OECD 301 and related test methods, Water Res., 37 (2003) 1571–1582.
  22. D.H. Caldwell, W.F. Langelier, Manometric measurement of the biochemical oxygen demand of sewage, Sewage Works, 20 (1948) 202–218.
  23. S. Jouanneau, L. Recoules, M.J. Durand, A. Boukabache, V. Picot, Y. Primault, A. Lakel, M. Sengelin, B. Barillon, G. Thouand, Methods for assessing biochemical oxygen demand (BOD): A review, Water Res., 49 (2014) 62–82.
  24. A. Hedi, B. Essghaier, J.L. Cayol, M.L. Fardeau, N. Sadfi, Prokaryotic biodiversity of halophilic microorganisms isolated from Sehline Sebkha Salt Lake (Tunisia), Afr. J. Microbiol. Res., 8 (2014) 355–367.
  25. S. Abdelkafi, S. Sayadi, Z.B. Ali Gam, L. Casalot, M. Labat, Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiol. Lett., 262 (2006) 115–120.
  26. E. Emanuilova, M. Kambourova, M. Dekosvka, R. Manolov, Thermoalkalophilic lipase producing Bacillus selected by continuous cultivation, FEMS Microbiol. Lett., 108 (1993) 247– 250.
  27. L.D. Castro-Ochoa, C. Rodriguez-Gomez, G. Valerio-Alfaro, R. Oliart Ros, Screening purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11, Enzym. Microb. Technol., 37 (2005) 648–654.
  28. R. Fulzele, E. Desa, A. Yadav, Y. Shouche, R. Bhadekar, Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean, Brazil. J. Microbiol., 42 (2011) 1364–1373.
  29. O. Tsuchida, Y. Yamagota, J. Ishizuka, J. Arai, J. Yamada, M. Takeuchi, E. Ichishima, An alkaline protease of an alkalophilic Bacillus sp., Curr. Microbiol., 14 (1986) 7–12.
  30. K. Wilson, In: F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K., Current protocols in molecular biology, Wiley Publications, New York, (1997) 241– 245.
  31. W. Weisburg, S. Barns, D. Pelletier, D. Lane, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 173 (1991) 697–703.
  32. S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped BLAST and PSI-BLAST: A new generation of protein database search programs, Nucleic Acids Res., 25 (1997) 3389–3402.
  33. J.R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity, J.M. Tiedje, The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res., 37 (2009) 141–145.
  34. R.C. Edgar, MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32 (2004) 1792–1797.
  35. S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33 (2016) 1870–1874.
  36. N. Saitou, M. Nei, The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4 (1987) 406–426.
  37. J. Felsenstein, Confidence limits of phylogenesis. Evol., 39 (1985) 783–791.
  38. D.J. Kushner, In: C.R. Woese, R.S. Wolfe, The Bacteria, Academic Press Publications, London, (1985) 171–214.
  39. I. Romano, A. Gambacorta, L. Lama, B. Nicolaus, A. Giordano, Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy) Syst., Appl. Microbiol., 28 (2005) 34–42.
  40. R. Ruimy, V. Breittmayer, P. Elbaze, B. Lafay, O. Boussemart, M. Gauthier, R. Christen, Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small-subunit rRNA sequences, Int. J. Syst. bacterial., 44 (1994) 416–426.
  41. N. Chamroensaksri, S. Tanasupawat, A. Akaracharanya, W. Visessanguan, T. Kudo, T. Itoh, Salinivibrio siamensis sp. nov., from fermented fish (pla-ra) in Thailand, Int. J. Syst. Evol. Microbiol., 59 (2009) 880–885.
  42. M. Jemli, F. Karray, F. Feki, S. Loukil, N. Mhiri, F. Aloui, S. Sayadi, Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia), J. Environ. Sci., 30 (2015) 102–112.