References

  1. Q.Q. Zhu, M. Maeno,T. Miyamoto, M. Fukushima, Monopersulfate oxidation of 2,4,6-tribromophenol using an iron(III)-tetrakis (p-sulfonatephenyl) porphyrin catalyst supported on an ionic liquid functionalized Fe3O4 coated with silica, Appl. Catal. B-Environ., 163 (2015) 459–466.
  2. A.N. Halden, J.R. Nyholm, P.L. Andersson, H. Holbech, L. Norrgren, Oral exposure of adult zebrafish (Danio rerio) to 2,4,6-tribromophenol affects reproduction, Aquat. Toxicol., 100 (2010) 30–37.
  3. P. Andrewes, J.G. Bendall, G. Davey, R. Shingleton, A musty flavour defect in calcium caseinate due to chemical tainting by 2,4,6-tribromophenol and 2,4,6-tribromoanisole, Int. Dairy J., 20 (2010) 423–428.
  4. P. Dhiman, M. Naushad, K.M. Batoo, A. Kumar, G. Sharma, A. A. Ghfar, G. Kumar, M. Singh, Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of Bisphenol A from water, J. Clean. Prod., 165 (2017) 1542–1556.
  5. T. Weidlich, L. Prokeš, D. Pospíšilová, Debromination of 2,4,6-tribromophenol coupled with biodegradation, Cent. Eur. J. Chem., 11 (2013) 979–987.
  6. J.Y. Li, X.Y. Long, H.X. Yin, J.Q. Qiao, H.Z. Lian, Magnetic solid-phase extraction based on a polydopamine-coated Fe3O4 nanoparticles absorbent for the determination of bisphenol A, tetrabromobisphenol A, 2,4,6-tribromophenol, and (S)-1,1’-bi-2-naphthol in environmental waters by HPLC, J. Sep. Sci., 39 (2016) 2562–2572.
  7. M. Igarashi,Q.Q. Zhu, M. Sasaki, R. Kodama, K. Oda, Catalytic oxidation of 2,4,6-tribromophenol using iron(III) complexes with imidazole, pyrazole, triazine and pyridine ligands, J. Mol. Catal. A-Chem., 413 (2016) 100–106.
  8. S. Fukuchi, R. Nishimoto, M. Fukushima, Q.Q. Zhu, Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite, Appl. Catal. B-Environ., 147 (2014) 411–419.
  9. C. Leonetti, C.M. Butt, K. Hoffman, M.L. Miranda, H.M. Stapleton, Concentrations of polybrominated diphenyl ethers (PBDEs) and 2,4,6-tribromophenol in human placental tissues, Environ. Int., 88 (2016) 23–29.
  10. S. Schafer, U. Bickmeyer, A. Koehler, Measuring Ca(2+)-signalling at fertilization in the sea urchin Psammechinus miliaris: alterations of this Ca(2+)-signal by copper and 2,4,6-tribromophenol, Comp. Biochem. Physc., 150 (2009) 261–269.
  11. X.L. Ma, D. Wu, L.M. Huang, Z.Y. Wu, S.C. Xiang, Sensing 2,4,6-tribromophenol based on molecularly imprinted technology, Monatsh. Chem., 146 (2014) 485–491.
  12. T. Weidlich, A. Krejčová, Hydrodebromination of 2,4,6-tribromophenol in aqueous solution using Devarda’s alloy, Monatsh. Chem., 144 (2012) 155–162.
  13. B. Gao, L.F. Liu, J.D. Liu, F.L. Yang, Photocatalytic degradation of 2,4,6-tribromophenol on Fe2O3 or FeOOH doped ZnIn2S4 heterostructure: Insight into degradation mechanism, Appl. Catal. B-Environ., 147 (2014) 929–939.
  14. B. Gao, L.F. Liu, J.D. Liu, F.L. Yang, Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped ZnIn2S4: Stable activity and enhanced debromination, Appl. Catal. B-Environ., 129 (2013) 89–97.
  15. T. Yamada, Y. Takahama, Y. Yamada, Biodegradation of 2,4,6-tribromophenol by Ochrobactrum sp. strain TB01, Biosci. Biotechnol. Bioch., 72 (2008) 1264–1271.
  16. H.Y. Luo, X. Nie, G.Y. Li, J.K. Liu, T.C. An, Structural characterization and photocatalytic activity of hydrothermally synthesized mesoporous TiO2 for 2,4,6-tribromophenol degradation in water, Chinese. J. Catal., 32 (2011) 1349–1356.
  17. Z.L. Li, N. Yoshida, A.J. Wang, J. Nan, B. Liang, Anaerobic mineralization of 2,4,6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans, Bioresource. Technol., 176 (2015) 225–232.
  18. C. Donoso, J. Becerra, M. Martínez, N. Garrido, M. Silva, Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricusaugustus isolated from chilean forestry, World. J. Microb. Bio., 24 (2007) 961– 968.
  19. J. Aguayo, R. Barra, J. Becerra, M. Martínez, Degradation of 2,4,6-tribromophenol and 2,4,6-trichlorophenol by aerobic heterotrophic bacteria present in psychrophilic lakes, World. J. Microb. Bio., 25 (2008) 553–560.
  20. Q.Q. Zhu, Y. Mizutani, S. Maeno, R. Nishimoto, T. Miyamoto, Potassium monopersulfate oxidation of 2,4,6-tribromophenol catalyzed by a SiO2-supported iron(III)-5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin, J. Environ. Sci. Heal. A., 48 (2013) 1593–1601.
  21. M. Marková, P. Kučerová, J. Skopalová, P. Barták, Electrochemical oxidation of 2,4,6-tribromophenol in aqueous-alcoholic media, Electroanal., 27 (2015) 156–165.
  22. X. Lu, Y.S. Shao, N.Y. Gao, L. Ding, Equilibrium, thermodynamic, and kinetic studies of the adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution by MIEX resin, J. Chem. Eng. Data., 60 (2015) 1259–1269.
  23. M. Naushad, Z.A. Alothman, M.R. Awual, Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: kinetics, isotherms, and thermodynamic studies, Desal. Water. Treat., 57 (2016) 13527–13533.
  24. C. Mardones, D. Von Baer, A. Hidalgo, A. Contreras, C. Sepulveda, Determination of pentachlorophenol and tribromophenol in sawdust by ultrasound-assisted extraction and MEKC, J. Sep. Sci., 31 (2008) 1124–1129.
  25. A. Dabrowski, Z. Hubicki, P. Podkoscielny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56 (2004) 91–106.
  26. A. Kumar, M. Naushad, A. Rana, ZnSe-WO3 nano-hetero-assembly stacked on Gum Ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol., 104 (2017) 1172–1184.
  27. Y.L. Tang, S. Liang, H.C. Guo, H.R. You, N.Y. Gao, Adsorptive characteristics of perchlorate from aqueous solutions by MIEX resin, Colloid. Surfaces. A., 417 (2013) 26–31.
  28. K. Watson, M.J. Farre, N. Knight, Enhanced coagulation with powdered activated carbon or MIEX secondary treatment: a comparison of disinfection by-product formation and precursor removal, Water. Res., 68 (2015) 454–466.
  29. M. Naushad, S. Vasudevan, G. Sharma, Adsorption kinetics, isotherms, and thermodynamic studies for Hg adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin, Desal. Water Treat., 2015 (2015) 1–9.
  30. T.V. Nguyen,R. Zhang, S. Vigneswaran, Removal of organic matter from effluents by magnetic ion exchange (MIEX®), Desalination, 276 (2011) 96–102.
  31. R. Zhang, S. Vigneswaran, H.H. Ngo, Magnetic ion exchange (MIEX®) resin as a pre-treatment to a submerged membrane system in the treatment of biologically treated wastewater, Desalination, 192 (2006) 296–302.
  32. L. Ding, X. Lu, H. Deng H, Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions using MIEX resin, Ind. Eng. Chem. Res., 51 (2012) 11226–11235.
  33. X. Zhang, X. Lu, S. Li, Investigation of 2,4-dichlorophenoxyacetic acid adsorption onto MIEX resin: Optimization using response surface methodology, J. Taiwan. Inst. Chem. E., 45 (2014) 1835–1841.
  34. L. Ding, C. Wu, H. Deng, Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin, J. Colloid. Interf. Sci., 376 (2012) 224.
  35. K. Braun, L. Cruaux, R. Fabris, J. Morran, L. Ho, Comparison of coagulation and MIEX pre-treatment processes for bacterial and turbidity removal, utilizing real-time optical monitoring techniques, Environ. Technol., 35 (2014) 1038–1045.
  36. J. Xu, W.Y. Xu, D.S. Wang, G.Q. Sang, X.S. Yang, Evaluation of enhanced coagulation coupled with magnetic ion exchange (MIEX) in natural organic matter and sulfamethoxazole removals: The role of Al-based coagulant characteristic, Sep. Purif. Technol., 167 (2016) 70–78.
  37. H.C. Kim, High-rate MIEX filtration for simultaneous removal of phosphorus and membrane foulants from secondary effluent, Water. Res., 69 (2015) 40–45.
  38. E.R. Kenawy, A.A. Ghfar, M. Naushad, Efficient removal of Co(II) metal ion from aqueous solution using cost-effective oxidized activated carbon: Kinetic and isotherm studies, Desal. Water. Treat., 70 (2017) 220–226.
  39. C.M. Futalan, C.C. Kan, M.L. Dalida, C. Pascua, M.W. Wan, Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite, Carbohyd. Polym., 83 (2011) 697–704.
  40. Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process. Biochem., 39 (2004) 599–613.
  41. S.H. Chen, Q.Y. Yue, B.Y. Gao, Q. Li, X. Xu, Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study, Bioresour. Technol., 113 (2012) 114–120.
  42. A.A. Alqadami, N. Mu, M.A. Abdalla, Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies, J. Chem. Eng. Data., 61 (2016) 3806–3813.
  43. L. Ding, H.P. Deng, C. Wu, X. Han, Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin, Chem. Eng. J., 181 (2012) 360–370.
  44. L. Ding, C. Wu, H.P. Deng, X.X. Zhang, Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin, J. Colloid. Interf. Sci., 376 (2012) 224–232.
  45. J.N. Wang, A.M. Li, L. Xu, Y. Zhou, Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu(II) on their removal, J. Hazard. Mater., 169 (2009) 794–800.
  46. L. Zu, G.Y. Li, T.C. An, P.K. Wong, Biodegradation kinetics and mechanism of 2,4,6-tribromophenol by Bacillus sp. GZT: a phenomenon of xenobiotic methylation during debromination, Bioresource. Technol., 110 (2012) 153–159.
  47. L. Zu, G.Y. Li, J.B. An, J.J. Li, T.C. An, Kinetic optimization of biodegradation and debromination of 2,4,6-tribromophenol using response surface methodology, Int. Biodeter. Biodegr., 76 (2013) 18–23.
  48. L. Ding, B. Du, G. Luo, H.P. Deng, Adsorption of bromate from emergently polluted raw water using MIEX resin: equilibrium, kinetic, and thermodynamic modeling studies, Desal. Water. Treat., 56 (2014) 2193–2205.
  49. Y.P. Zhu, N.Y. Gao, Q.F. Wang, X.Y. Wei, Adsorption of perchlorate from aqueous solutions by anion exchange resins: Effects of resin properties and solution chemistry, Colloid. Surfaces. A., 468 (2015) 114–121.
  50. H. Kuramochi, K. Kawamoto, S.L. Sakai, Effects of pH on the water solubility and 1-octanol-water partition coefficient of 2,4,6-tribromophenol, J. Environ. Monitor., 10 (2008) 206–210.
  51. M.L. Wang, Y.M. Hsieh, C.W. Chang, A kinetic study of phase transfer catalyzed benzylation of 2,4,6-tribromophenol in liquid-liquid two-phase solution, Chem. Eng. Commun., 198 (2011) 939–956.
  52. Y.L. Tang, S.Y. Li, Y.H. Zhang, S.L. Yu, M. Martikka, Sorption of tetrabromobisphenol A from solution onto MIEX resin: Batch and column test, J. Taiwan. Inst. Chem. E., 45 (2014) 2411–2417.
  53. J.T. Huang, L. Alquier, J.P. Kaisa, G. Reed, T. Gilmor, Method development and validation for the determination of 2,4,6-tribromoanisole, 2,4,6-tribromophenol, 2,4,6-trichloroanisole, and 2,4,6-trichlorophenol in various drug products using stir bar sorptive extraction and gas chromatography-tandem mass spectrometry detection, J. Chromatogr. A., 1292 (2012) 196–204.
  54. M. Aeschbacher, C. Graf, R.P. Schwarzenbach, M. Sander, Antioxidant properties of humic substances, Environ. Sci. Technol., 46 (2012) 4916–4925.
  55. B.H. Hameed, A.A. Ahmad, Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass, J. Hazard. Mater., 164 (2009) 870– 875.
  56. R. Chen, Q. Yang, Y. Zhong, X. Li, Y. Liu, Sorption of trace levels of bromate by macroporous strong base anion exchange resin: Influencing factors, equilibrium isotherms and thermodynamic studies, Desalination, 344 (2014) 306–312.
  57. E. Pehlivan, S. Cetin, Sorption of Cr(VI) ions on two Lewatit- anion exchange resins and their quantitative determination using UV-visible spectrophotometer, J. Hazard. Mater., 163 (2009) 448–453.
  58. W.Q. Wang, M.Y. Li, Q.X. Zeng, Thermodynamics of Cr(VI) adsorption on strong alkaline anion exchange fiber, T. Nonferr. Metal. Soc., 22 (2012) 2831–2839.
  59. S. Kundu, A.K. Gupta, Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto iron oxide-coated cement (IOCC), J. Colloid. Interf. Sci., 290 (2005) 52–60.
  60. F.W. Sousa, A.G. Oliveira, J.P. Ribeiro, M.F. Rosa, D. Keukeleire, Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology, J. Environ. Manage., 91 (2010) 1634–1640.
  61. M. Naushad, Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+, from aqueous medium, Chem. Eng. J., 235 (2014) 100–108.
  62. Y. Zhang, Y. Tang, S. Li, Sorption and removal of tetrabromobisphenol A from solution by graphene oxide, Chem. Eng. J., 222 (2013) 94–100.
  63. W.Q. Wang, Y.L. Ming, Q.X. Zeng, Thermodynamics of Cr(VI) adsorption on strong alkaline anion exchange fiber, T. Nonferr. Metal. Soc., 22 (2012) 2831–2839.
  64. M. Naushad, T. Ahamad, B.M. Al-Maswari, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351–1360.
  65. A.A. Alqadami, M. Naushad, Z.A. Alothman, Novel metal- organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment, Acs. Appl. Mater. Inter., 9 (2017) 36026– 36037.
  66. G. Sharma, M. Naushad, A. Kumar, Efficient removal of Coomassie brilliant blue R-250 dye using starch/poly(alginic acid-Cl-acrylamide) nanohydrogel, Process. Saf. Environ., 109 (2017) 301–310.