References

  1. J.W. Patterson, Industrial Wastewater Treatment Technology, Butterworth Publishers, Stoneham, MA (1985) 53–393.
  2. U. Thacker, R. Parikh, Y. Shouche, D. Madamwar, Hexavalent chromium reduction by Providencia sp., Process Biochem., 41 (2006) 1332–1337.
  3. J. Yao, L. Tian, L.Y. Wang, A. Djah, F. Wang, H. Chen, E. Bramanti, Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotoxicolo. Environ. Saf., 69 (2008) 289– 295.
  4. M. Cieślak-Golonka, Toxic and mutagenic effect of chromium (VI). A review, Polyhedron, 15 (1996) 3667–3689.
  5. R.M. Bruce, J. Santodonato M.W. Neal, Summary review of the health effects associated with phenol, Toxicol. Ind. Health, 3 (1987) 535–568.
  6. World Health Organization, Health Criteria and Supporting Information, WHO Guidelines for Drinking Water Quality (vol. II), Geneva, Switzerland, 1984.
  7. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  8. S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated gC3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods, J. Mater. Chem. A, 3 (2015) 10119–10126.
  9. G.E. Box, K.B. Wilson, On the experimental attainment of optimum conditions, Roy. Statist. Soc, Ser. B, 13 (1951) 1–45.
  10. M. Ghaedi, S. Hajati, M. Zare, M. Zare, S.Y. Shajaripour Jaberi, Experimental design for simultaneous analysis of malachite green and methylene blue; derivative spectrophotometry and principal component-artificial neural network, RSC Adv., 5 (2015) 38939–38947.
  11. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design, RSC Adv., 5 (2015) 18438–18450.
  12. J.N. Sahu, J. Acharya, B.C. Meikap, Response surface modeling and optimization of chromium (VI) removal from aqueous solution using tamarind wood activated carbon in batch process, J. Hazard. Mater., 172 (2009) 818–825.
  13. Z. Alam, S.A. Muyibi, J. Toramae, Statistical optimization of adsorption processes for removal of 2-4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches, J. Environ. Sci., 19 (2007) 674–677.
  14. P. Ricou-Hoeffer, I. Lecuyer, P.L. Cloirec, Experimental design methodology applied to adsorption of metallic ions onto fly ash, Water Res., 35 (2001) 965–976.
  15. U.K. Garg, M.P. Kaur, V.K. Garg, D. Sud, Removal of nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach, Bioresour. Technol., 99 (2008) 1325–1331.
  16. R.M. Aghav, S. Kumar, S.N. Mukherjee, Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents, J. Hazard. Mater., 188 (2011) 67–77.
  17. K. Yetilmezsoy, S. Demirel, Artificial neural network (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells, J. Hazard. Mater., 153 (2008) 1288–1300.
  18. K.V. Kumar, K. Porkodi, R.L. Avila Rondon, F. Rocha, Neural network modeling and simulation of the solid/liquid activated carbon adsorption process, Ind. Eng. Chem. Res., 47 (2008) 486–490.
  19. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32(1994) 759–769.
  20. B.M. Babić, S.K. Milonjić, M.J. Polovina, B.V. Kaludierović, Point of zero charge and intrinsic equilibrium constants of activated carbon cloth, Carbon, 37 (1999) 477–481.
  21. M. Mastalerz, R.M. Bustin, Application of reflectance micro-Fourier transform infrared spectrometry in studying coal macerals: comparison with other Fourier transform infrared techniques, Fuel, 74 (1995) 536–542.
  22. N. Aktaş, Optimization of biopolymerization rate by response surface methodology (RSM), Enzyme Microb. Technol., 37 (2005) 441–447.
  23. A. Shukla, Y.H. Zhang, P. Dubey, J.L. Margrave, S.S. Shukla, The role of sawdust in the removal of unwanted materials from water, J. Hazard. Mater., 95 (2002) 137–152.
  24. M. Bansal, D. Singh, V.K. Garg, A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons, J. Hazard. Mater., 171 (2009) 83–92.
  25. W. Daoud, T. Ebadi, A. Fahimifar, Optimization of hexavalent chromium removal from aqueous solution using acid-modified granular activated carbon as adsorbent through response surface methodology, Korean J. Chem. Eng., 32 (2015) 1119–1128.
  26. B. Agarwal, C. Balomajumder, P.K. Thakur, Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon, Chem. Eng. J., 228 (2013) 655–664.
  27. E.A. Dil, M. Ghaedi, A.M. Ghaedi, A. Asfaram, A. Goudarzi, S. Hajati, M. Soylak, S. Agarwal, V.K. Gupta, Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: Analysis by derivative spectrophotometry, J. Ind. Eng. Chem., 34 (2016) 186–197.
  28. B. Hameed, Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions, J. Hazard. Mater., 161 (2009) 753–759.
  29. S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad., Hl., 24 (1898) 1–39.
  30. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  31. M. Özacar, İ.A. Şengil, A kinetic study of metal complex dye sorption onto pine sawdust, Process Biochem., 40 (2005) 565– 572.
  32. I. Langmuir, Chemical reactions at low pressures, J. Am. Chem. Soc., 37 (1915) 1139–1167.
  33. T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed bed adsorbers, AIChE J., 20 (1974) 228–238.
  34. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  35. G.S. Agarwal, H.K. Bhuptawat Chaudhari, Biosorption of aqueous chromium (VI) by Tamarindus indica seeds, Bioresour. Technol., 97 (2006) 949–956.
  36. J.C. Lazo-Cannata, A. Nieto-Márquez, A. Jacoby, A.L. Paredes-Doig, A. Romero, M.R. Sun-Kou, J.L. Valverde, Adsorption of phenol and nitrophenols by carbon nanospheres: Effect of pH and ionic strength , Sep. Purif. Technol., 80 (2011) 217–224.
  37. A. Gupta, C. Balomajumder, Simultaneous adsorption of Cr(VI) and phenol onto tea waste biomass from binary mixture: multicomponent adsorption, thermodynamic and kinetic study, J. Envir. Chem. Eng., 3 (2015) 785–796.
  38. A. Gupta, C. Balomajumder, Simultaneous removal of Cr(VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass, J. Water. Process. Eng., 6 (2015) 1–10.