References

  1. H. Wheater, S. Sorooshian, K.D. Sharma, Hydrological Modelling in Arid and Semi-Arid Areas, Cambridge University Press, UK, 2007.
  2. M.N. French, W.F. Krajewski, R.R. Cuykendall, Rainfall forecasting in space and time using a neural network, J. Hydrol., 137 (1992) 1–31.
  3. A.Y. Shamseldin, Application of a neural network technique to rainfall-runoff modelling, J. Hydrol., 199 (1997) 272–294.
  4. K. Beven, Infiltration excess at the Horton Hydrology Laboratory (or not?), J. Hydrol., 293 (2004) 219–234.
  5. J. Merz, P.M. Dangol, M.P. Dhakal, B.S. Dongol, G. Nakarmi, R. Weingartner, Rainfall-runoff events in a middle mountain catchment of Nepal, J. Hydrol., 331 (2006) 446–458.
  6. P. Brunner, J. Doherty, C.T. Simmons, Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models, Water Resour. Res., 48 (2012) p. W07513.
  7. M.-J. Shin, J.H. Guillaume, B.F. Croke, A.J. Jakeman, A review of foundational methods for checking the structural identifiability of models: results for rainfall-runoff, J. Hydrol., 520 (2015) 1–16.
  8. M. Anderson, Z.-Q. Chen, M. Kavvas, A. Feldman, Coupling HEC-HMS with atmospheric models for prediction of watershed runoff, J. Hydrol. Eng., 7 (2002) 312–318.
  9. V. Gardiner, Drainage Basin Morphometry, A. Goudie, Ed., Geomorphological Techniques, Unwin Hyman, London, 1990, pp. 71–81.
  10. P.C. Patton, Drainage Basin Morphometry and Floods, Flood Geomorphology, John Wiley & Sons, New York, 1988, pp. 51–64.
  11. L. Olang, J. Fürst, Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River Basin, Kenya, Hydrol. Proc., 25 (2011) 80–89.
  12. A. Biswas, D. Das Majumdar, S. Banerjee, Morphometry governs the dynamics of a drainage basin: analysis and implications, Geogr. J., 2014 (2014), Article ID 927176, 14 pages.
  13. I.A. Abboud, R.A. Nofal, Morphometric analysis of wadi Khumal basin, western coast of Saudi Arabia, using remote sensing and GIS techniques, J. Afr. Earth Sci., 126 (2017) 58–74.
  14. M. Sangati, M. Borga, Influence of rainfall spatial resolution on flash flood modelling, Nat. Hazard Earth Syst. Sci., 9 (2009) 575–584.
  15. I. Abustan, A.H. Sulaiman, N. Abdul Wahid, F. Baharudin, Determination of Rainfall-Runoff Characteristics in an Urban Area: Sungai Kerayong Catchment, Kuala Lumpur, 2008.
  16. E. Bournaski, R. Iliev, L. Kirilov, HEC-HMS modelling of rainstorm in a catchment. The Mesta case study, C.R. Acad. Bulgare Sci., 62 (2009) 1141–1146.
  17. M. Al-Ahmadi, A. El-Fiky, Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, western Saudi Arabia, J. King Saud Univ. Sci., 21 (2009) 179–190.
  18. M. Knebl, Z.-L. Yang, K. Hutchison, D. Maidment, Regional scale flood modeling using NEXRAD rainfall, GIS, and HECHMS/ RAS: a case study for the San Antonio River Basin Summer 2002 storm event, J. Environ. Manage., 75 (2005) 325–336.
  19. Z. Yusop, C. Chan, A. Katimon, Runoff characteristics and application of HEC-HMS for modelling stormflow hydrograph in an oil palm catchment, Water Sci. Technol., 56 (2007) 41–48.
  20. E. Abushandi, B. Merkel, Modelling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan, Water Resour. Manage., 27 (2013) 2391–2409.
  21. J. Du, L. Qian, H. Rui, T. Zuo, D. Zheng, Y. Xu, C.-Y. Xu, Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China, J. Hydrol., 464 (2012) 127–139.
  22. S. Shadeed, M. Almasri, Application of GIS-based SCS-CN method in West Bank catchments, Palestine, Water Sci. Eng., 3 (2010) 1–13.
  23. F. Radmanesh, J.P. Hemat, A. Behnia, A. Khond, B.A. Mohamad, Calibration and Assessment of HEC-HMS Model in Roodzard Watershed, 17th International Conference of River Engineering, University of Shahid Chamran, Ahva, 2006.
  24. T. Kafle, M. Hazarika, S. Karki, R. Shrestha, S. Sharma, L. Samarakoon, Basin Scale Rainfall-Runoff Modelling for Flood Forecasts, Proc. 5th Annual Mekong Flood Forum, Ho Chi Minh City, Vietnam, 2007, pp. 17–18.
  25. F.S. Al-Ahmadi, Rainfall-Runoff Modeling in Arid Regions Using Geographic Information Systems and Remote Sensing: Case Study; Western Region of Saudi Arabia, King Abdulaziz University Jeddah, 2005.
  26. D.G. Hadley, R.J. Fleck, Reconnaissance Geology of the Al Lith Quadrangle, Sheet 20/40 C, Kingdom of Saudi Arabia, US Geological Survey, 1979.
  27. S. Bajabaa, M. Masoud, N. Al-Amri, Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia), Arab. J. Geosci., 7 (2014) 2469–2481.
  28. D. Moore, Representative Basins Study for Wadis: Yiba, Habawnah, Tabalah, Liyyah and Lith, Final Report by Dames & Moore, Saudi Arabia to Ministry of Agriculture and Water, Riyadh, 1988.
  29. W. Scharffenberg, A. Feldman, Joint Conference on Water Resource Engineering and Water Resources Planning and Management, Minneapolis, MN, USA, 2000.
  30. A.D. Feldman, Hydrologic Modeling System HEC-HMS: Technical Reference Manual, US Army Corps of Engineers, Hydrologic Engineering Center, 2000.
  31. R.E. Horton, An approach toward a physical interpretation of infiltration-capacity, Soil Sci. Soc. Am. J., 5 (1941) 399–417.
  32. R.K. Linsley, M.A. Kohler, J.L.H. Paulhus, Applied Hydrology, McGraw-Hill, New York, 1949.
  33. M.N. Allam, K.S. Balkhair, Case study evaluation of the geomorphologic instantaneous unit hydrograph, Water Resour. Manage., 1 (1987) 267–291.
  34. R. Meenu, S. Rehana, P. Mujumdar, Assessment of hydrologic impacts of climate change in Tunga–Bhadra river basin, India with HEC‐HMS and SDSM, Hydrol. Processes., 27 (2013) 1572–1589.
  35. G.M. Reza, Evaluation of flood mitigation alternatives using hydrological modeling, J. Appl. Sci. Environ. Manage., 11 (2007) 113–117.
  36. H. Jin, R. Liang, Y. Wang, P. Tumula, Flood-runoff in semi-arid and sub-humid regions, a case study: a simulation of Jianghe watershed in Northern China, Water, 7 (2015) 5155–5172.
  37. A. Majidi, K. Shahedi, Simulation of rainfall-runoff process using Green-Ampt Method and HEC-HMS model (case study: Abnama Watershed, Iran), Int. J. Hydraul. Eng., 1 (2012) 5–9.
  38. W.H. Asquith, M.C. Roussel, An Initial-Abstraction, Constant- Loss Model for Unit Hydrograph Modeling for Applicable Watersheds in Texas, US Geological Survey, 2007.
  39. L.W. Mays, Water Resources Engineering, John Wiley & Sons, NY, USA, 2010.
  40. E. Baltas, N. Dervos, M. Mimikou, Determination of the SCS initial abstraction ratio in an experimental watershed in Greece, Hydrol. Earth Syst. Sci., 11 (2007) 1825–1829.
  41. R.H. Hawkins, T.J. Ward, D.E. Woodward, J.A. Van Mullem, Continuing Evolution of Rainfall-Runoff and the Curve Number Precedent, Proc. 2nd Joint Federal Interagency Conference, 2010.
  42. Z.-H. Shi, L.-D. Chen, N.-F. Fang, D.-F. Qin, C.-F. Cai, Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China, CATENA, 77 (2009) 1–7.
  43. J. Marsalek, C. Maksimovic, E. Zeman, R. Price, Hydroinformatics Tools for Planning, Design, Operation and Rehabilitation of Sewer Systems, Springer Science & Business Media, Netherlands, 2013.
  44. D.E. Overton, M.E. Meadows, Stormwater Modeling, Academic Press, New York, 1976.
  45. C.W. Rose, An Introduction to the Environmental Physics of Soil, Water and Watersheds, Cambridge University Press, UK, 2004.
  46. J.K. Edzwald, Water Quality and Treatment a Handbook on Drinking Water, McGraw Hill, New York, USA, 2010.