References

  1. S. Lin, A.P. Straub, M. Elimelech, Thermodynamic limits of extractable energy by pressure retarded osmosis, Energy Environ. Sci., 7 (2014) 2706–2714.
  2. S. Zhang, T.-S. Chung, Osmotic power production from seawater brine by hollow fiber membrane modules: net power output and optimum operating conditions, AIChE J., 62 (2016) 1216–1225.
  3. H. Sharifan, H.T. Madsen, A. Morse, High performance in power generation by pressure-retarded osmosis (PRO) from hypersalinity gradient: case study of hypersaline Lake of Urmia, Iran, Desal. Wat. Treat., 71 (2017) 302–311.
  4. F. La Mantia, M. Pasta, H.D. Deshazer, B.E. Logan, Y. Cui, Batteries for efficient energy extraction from a water salinity difference, Nano Lett., 11 (2011) 1810–1813.
  5. J.C. da Silva, C.P. Borges, Development and analysis of membranes for osmotic processes, Desal. Wat. Treat., 70 (2017) 24–33.
  6. J. Maisonneuve, P. Pillay, C.B. Laflamme, Pressure-retarded osmotic power system model considering non-ideal effects, Renew. Energy, 75 (2015) 416–424.
  7. J. Maisonneuve, C.B. Laflamme, P. Pillay, Experimental investigation of pressure retarded osmosis for renewable energy conversion: towards increased net power, Appl. Energy, 164 (2016) 425–435.
  8. B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, 488 (2012) 313–319.
  9. F. Helfer, C. Lemckert, Y.G. Anissimov, Osmotic power with pressure retarded osmosis: theory, performance and trends – a review, J. Membr. Sci., 453 (2014) 337–358.
  10. A. Altaee, G. Zaragoza, A. Sharif, Pressure retarded osmosis for power generation and seawater desalination: performance analysis, Desalination, 344 (2014) 108–115.
  11. Y. Choi, S. Vigneswaran, S. Lee, Evaluation of fouling potential and power density in pressure retarded osmosis (PRO) by fouling index, Desalination, 389 (2016) 215–223.
  12. N.Y. Yip, M. Elimelech, Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis, Environ. Sci. Technol., 46 (2012) 5230–5239.
  13. A.P. Straub, A. Deshmukh, M. Elimelech, Pressure-retarded osmosis for power generation from salinity gradients: is it viable? Energy Environ. Sci., 9 (2016) 31–48.
  14. R.J. Aaberg, Osmotic power: a new and powerful renewable energy source? Refocus, 4 (2003) 48–50.
  15. S.E. Skilhagen, J.E. Dugstad, R.J. Aaberg, Osmotic power — power production based on the osmotic pressure difference between waters with varying salt gradients, Desalination, 220 (2008) 476–482.
  16. K. Gerstandt, K.V. Peinemann, S.E. Skilhagen, T. Thorsen, T. Holt, Membrane processes in energy supply for an osmotic power plant, Desalination, 224 (2008) 64–70.
  17. T. Thorsen, T. Holt, The potential for power production from salinity gradients by pressure retarded osmosis, J. Membr. Sci., 335 (2009) 103–110.
  18. J.R. McCutcheon, M. Elimelech, Modeling water flux in forward osmosis: implications for improved membrane design, AIChE J., 53 (2007) 1736–1744.
  19. A.P. Straub, N.Y. Yip, M. Elimelech, Raising the bar: increased hydraulic pressure allows unprecedented high power densities in pressure-retarded osmosis, Environ. Sci. Technol. Lett., 1 (2014) 55–59.
  20. C.F. Wan, T.-S. Chung, Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed, J. Membr. Sci., 479 (2015) 148–158.
  21. S. Xu, Y. Liu, Y. Wang, M. Zhang, Q. Xiao, Y. Duan, Influential analysis of concentration polarization on water flux and power density in PRO process: modeling and experiments, Desalination, 412 (2017) 39–48.
  22. W. He, Y. Wang, M.H. Shaheed. Energy and thermodynamic analysis of power generation using a natural salinity gradient based pressure retarded osmosis process, Desalination, 350 (2014) 86–94.
  23. W. He, Y. Wang, L.M. Mujtaba, M.H. Shaheed, An evaluation of membrane properties and process characteristics of a scaled-up pressure retarded osmosis (PRO) process, Desalination, 378 (2016) 1–13.
  24. K. Touati, F. Tadeo, Study of the reverse salt diffusion in pressure retarded osmosis: influence on concentration polarization and effect of the operating conditions, Desalination, 389 (2016) 171–186.
  25. G.D. Mehta, S. Loeb, Internal polarization in the porous substructure of a semi permeable membrane under pressureretarded osmosis, J. Membr. Sci., 4 (1978) 261–265.
  26. Y. Wang, M. Zhang, Y. Liu, Q. Xiao, S. Xu, Quantitative evaluation of concentration polarization under different operating conditions for forward osmosis process, Desalination, 398 (2016) 106–113.
  27. J. Kim, B. Kim, D. Inhyuk Kim, S. Hong, Evaluation of apparent membrane performance parameters in pressure retarded osmosis processes under varying draw pressures and with draw solutions containing organics, J. Membr. Sci., 493 (2015) 636–644.
  28. S. Loeb, Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules, Desalination, 143 (2002) 115–122.
  29. G. Blandin, D.T. Myat, A.R.D. Verliefde, P. Le-Clech, Pressure assisted osmosis using nanofiltration membranes (PAO-NF): towards higher efficiency osmotic processes, J. Membr. Sci., 533 (2017) 250–260.