References
- L. Liu, L. Ding, Y. Liu, W. An, Sh. Lin, Y. Liang, W. Cui, A stable
Ag3PO4@PANI core@shell hybrid: enrichment photocatalytic
degradation with π-π conjugation, Appl. Catal., B, 201 (2017)
92–104.
- L. Liu, Y. Qi, J. Lu, Sh. Lin, W. An, Y. Liang, W. Cui, A stable
Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced
visible light photocatalytic degradation, Appl. Catal., B, 183
(2016) 133–141.
- X. Wang, Y. Liang, W. An, J. Hu, Y. Zhu, W. Cui, Removal of
chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and
photo-catalysis under visible light, Appl. Catal., B, 219 (2017)
53–62.
- F. Chen, W. An, L. Liu, Y. Liang, W. Cui, Highly efficient removal
of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy,
Appl. Catal., B, 217 (2017) 65–80.
- Y. Liang, Sh. Lin, L. Liu, J. Hu, W. Cui, Oil-in-water selfassembled
Ag@AgCl QDs sensitized Bi2WO6: enhanced
photocatalytic degradation under visible light irradiation,
Appl. Catal., B, 164 (2015) 192–203.
- W. Cui, W. An, L. Liu, J. Hu, Y. Liang, Novel Cu2O quantum
dots coupled flower-like BiOBr for enhanced photocatalytic
degradation of organic contaminant, J. Hazard. Mater., 280
(2014) 417–427.
- A.J. Nozik, R. Memming, Physical chemistry of semiconductor−liquid interfaces, J. Phys. Chem., 100 (1996) 13061–13078.
- H.Y. Zhu, Y. Lan, X.P. Gao, S.P. Ringer, Z.F. Zheng, D.Y. Song,
J.C. Zhao, Phase transition between nanostructures of titanate
and titanium dioxides via simple wet-chemical reactions, J. Am.
Chem. Soc., 127 (2005) 6730–6736.
- C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole,
Enhanced nitrogen doping in TiO2 nanoparticles, Nano Lett., 3
(2008) 1049–1051.
- R. Yuan, T. Chen, E. Fei, J. Lin, Z. Ding, J. Long, Z. Zhang,
X. Fu, P. Liu, L. Wu, Surface chlorination of TiO2-based
photocatalysts: a way to remarkably improve photocatalytic
activity in both UV and visible region, ACS Catal., 1 (2011)
200–206.
- H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, Y. Lu, Mesoporous Au/TiO2
nanocomposites with enhanced photocatalytic activity, J. Am.
Chem. Soc., 129 (2007) 4538–4539.
- L.Y. Hu, Y.M. Zhang, S.M. Zhang, B.X. Li, Synthesis,
characterization and photocatalytic performance of mesoporous
Si–N co-doped nano-spherical anatase TiO2 with high thermal
stability, RSC Adv., 6 (2016) 43098–43103.
- Y. Wang, J. Tao, X. Wang, Zh. Wang, M. Zhang, G. He, Zh.
Sun, A unique Cu2O/TiO2 nanocomposite with enhanced
photocatalytic performance under visible light irradiation,
Ceram. Int., 43 (2017) 4866–4872.
- Y. Zhang, J. Zhu, X. Yu, J. Wei, L. Hu, S. Dai, The optical and
electrochemical properties of CdS/CdSe co-sensitized TiO2 solar
cells prepared by successive ionic layer adsorption and reaction
processes, Sol. Energy, 86 (2012) 964–971.
- H.J. Lee, J. Bang, J. Park, S. Kim, S.-M. Park, Multilayered
semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous
solar cells: all prepared by successive ionic layer adsorption and
reaction processes, Chem. Mater., 22 (2010) 5636–5643.
- J. Shi, On the synergetic catalytic effect in heterogeneous
nanocomposite catalysts, Chem. Rev., 113 (2012) 2139–2181.
- I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am, Quantum
dot solar cells. Harvesting light energy with CdSe nanocrystals
molecularly linked to mesoscopic TiO2 films, Chem. Soc., 128
(2006) 2385–2393.
- R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for
environmental photocatalytic applications: a review, Ind. Eng.
Chem. Res., 52 (2013) 3581–3599.
- Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible
light driven type II heterostructures and their enhanced
photocatalysis properties: a review, Nanoscale, 5 (2013)
8326–8339.
- M. Hosseini, S. Siffert, H. Tidahy, R. Cousin, J.-F. Lamonier,
A. Aboukais, A. Vantomme, M. Roussel, B.-L. Su, Stability
and deactivation of Fe-ZSM-5 zeolite catalyst for catalytic wet
peroxide oxidation of phenol in a membrane reactor, Catal.
Today, 122 (2007) 391–396.
- B. Kumar, S. Saha, A. Ganguly, A.K. Ganguli, A facile low
temperature (350°C) synthesis of Cu2O nanoparticles and their
electrocatalytic and photocatalytic properties, RSC Adv., 4
(2014) 12043–12049.
- Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang,
P. Wang, Y. Dai, Crystal faces of Cu2O and their stabilities
in photocatalytic reactions, J. Phys. Chem. C, 113 (2009)
14448–14453.
- W.-C. Huang, L.-M. Lyu, Y.-C. Yang, M.H. Huang, Synthesis
of Cu2O nanocrystals from cubic to rhombic dodecahedral
structures and their comparative photocatalytic activity, J. Am.
Chem. Soc., 134 (2011) 1261–1267.
- C. Dong, M. Zhong, T. Huang, M. Ma, D. Wortmann, M. Brajdic,
I. Kelbassa, Photodegradation of methyl orange under visible
light by micro-nano hierarchical Cu2O structure fabricated by
hybrid laser processing and chemical dealloying, ACS Appl.
Mater. Interfaces, 3 (2011) 4332–4338.
- Q. Wang, K. Zhu, N.R. Neale, A.J. Frank, Constructing ordered
sensitized heterojunctions: bottom-up electrochemical synthesis
of p-type semiconductors in oriented n-TiO2 nanotube arrays,
Nano Lett., 9 (2009) 806–813.
- Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Photoeletrocatalytic
activity of a Cu2O-loaded self-organized highly oriented TiO2
nanotube array electrode for 4-chlorophenol degradation,
Environ. Sci. Technol., 43 (2009) 858–863.
- Z. Min, X. Wang, Y. Li, J. Jiang, J. Li, D. Qian, J. Li, A highly
efficient visible-light-responding Cu2O-TiO2/g-C3N4
photocatalyst for instantaneous discolorations of organic dyes,
Mater. Lett., 193 (2017) 18−21.
- H. Yuan, J. Liu, J. Li, Y. Li, X. Wang, Y. Zhang, J. Jiang, Sh. Chen,
Ch. Zhao, D. Qian, Designed synthesis of a novel BiVO4–Cu2O–TiO2 as an efficient visible-light-responding photocatalyst, J.
Colloid Interface Sci., 444 (2015) 58−66.
- J. Xing, Z. Chen, F. Xiao, X. Ma, C. Wen, Z. Li, H. Yang,
Cu-Cu2O-TiO2 nanojunction systems with an unusual electronhole
transportation pathway and enhanced photocatalytic
properties, Chem. Asian J., 8 (2013) 1265–1270.
- X. Li, J. Yu, J. Low, Y. Fang, J. Xiaoc, X. Chen, Engineering
heterogeneous semiconductors for solar water splitting, J.
Mater. Chem. A, 6 (2015) 2485–2534.
- H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solidstate
Z-scheme in CdS-Au-TiO2 three-component nanojunction
system, Nat. Mater., 5 (2006) 782–786.
- H. Zhu, B. Yang, J. Xu, Z. Fu, M. Wen, T. Guo, S. Fu, J. Zuo,
S. Zhang, Construction of Z-scheme type CdS-Au-TiO2 hollow
nanorod arrays with enhanced photocatalytic activity, Appl.
Catal., B, 90 (2009) 463–469.
- L. Zhang, K.H. Wong, Z. Chen, J.C. Yu, J. Zhao, C. Hu, C.Y.
Chang, P.K. Wong, AgBr-Ag-Bi2WO6 nanojunction system:
a novel and efficient photocatalyst with double visible-light
active components, Appl. Catal., A, 363 (2009) 221–229.
- X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, H2WO4-H2O/Ag/AgCl
composite nanoplates: a plasmonic Z-scheme visible-light
photocatalyst, J. Phys. Chem. C, 115 (2011) 14648–14655.
- L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two different
roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light
photocatalysts: surface plasmon resonance and Z-scheme
bridge, ACS Catal., 2 (2012) 1677–1683.
- D. Xu, B. Cheng, S. Cao, J. Yu, Enhanced photocatalytic
activity and stability of Z-scheme Ag2CrO4-GO composite
photocatalysts for organic pollutant degradation, Appl. Catal.
B, 164 (2015) 380–388.
- X. Wang, G. Liu, Z. Chen, F. Li, L. Wang, G. Lu, Enhanced
photocatalytic hydrogen evolution by prolonging the lifetime
of carriers in ZnO/CdS heterostructures, Chem. Commun., 23
(2009) 3452–3454.
- P. Zhou, J.G. Yu, M. Jaroniec, All-solid-state Z-scheme
photocatalytic systems, Adv. Mater., 26 (2014) 4920–4935.
- H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solidstate
Z-scheme in CdS-Au-TiO2 three-component nanojunction
system, Nat. Mater., 5 (2006) 782–786.
- K. Xie, Q. Wu, Y. Wang, W. Guo, M. Wang, L. Sun, Electrochemical
construction of Z-scheme type CdS/Ag/TiO2 nanotube arrays
with enhanced photocatalytic activity, Electrochem. Commun.,
13 (2011) 1469–1472.
- X. Wang, G. Liu, L. Wang, Z. Chen, G. Lu, H. Cheng, ZnO/CdS@Cd heterostructure for effective photocatalytic hydrogen
generation, Adv. Energy Mater., 2 (2012) 42–46.
- H. Lin, J. Cao, B. Luo, B. Xu, S. Chen, Synthesis of novel
Z-scheme AgI/Ag/AgBr composite with enhanced visible
light photocatalytic activity, Catal. Commun., 21 (2012) 91–95.
- H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solidstate
Z-scheme in CdS-Au-TiO2 three-component nanojunction
system, Nat. Mater., 5 (2006) 782–786.
- H. Zhu, B. Yang, J. Xu, Z. Fu, M. Wen, T. Guo, S. Fu, J. Zuo,
S. Zhang, Construction of Z-scheme type CdS-Au-TiO2 hollow
nanorod arrays with enhanced photocatalytic activity, Appl.
Catal., B, 90 (2009) 463–463.
- J. Fu, Sh. Cao, J. Yu, Dual Z-scheme charge transfer in TiO2/Ag/Cu2O composite for enhanced photocatalytic hydrogen
generation, J. Materiomics, 1 (2015) 124–133.
- U.G. Ahlborg, T.M. Thunberg, Chlorinated phenols: occurrence,
toxicity, metabolism, and environmental impact, Crit. Rev.
Toxicol., 7 (1980) 1–35.
- H.C. Lee, J.H. In, J.H. Kim, K.Y. Hwang, C.H. Lee, Kinetic analysis
for decomposition of 2,4-dichlorophenol by supercritical water
oxidation, Korean J. Chem. Eng., 22 (2005) 882–888.
- D.D. Dionysiou, A.P. Khodadoust, A.M. Kern, M.T. Suidan,
I. Baudin, J.M. Laîné, Continuous-mode photocatalytic
degradation of chlorinated phenols and pesticides in water
using a bench-scale TiO2 rotating disk reactor, Appl. Catal., B,
24 (2000) 139–155.
- K. Arnoldsson, P.L. Andersson, P. Haglund, Formation
of environmentally relevant brominated dioxins from
2,4,6,-tribromophenol via bromoperoxidase-catalyzed
dimerization, Environ. Sci. Technol., 46 (2012) 7239–7244.
- J. Bandara, J.A. Mielczarski, A. Lopez, J. Kiwi, Sensitized degradation
of chlorophenols on iron oxides induced by visible
light comparison with titanium oxide, Appl. Catal., B, 34 (2001)
321–333.
- X.D. Jiang, Y.P. Zhang, J. Jiang, Y. Rong, Y. Wang, Y. Wu, C.
Pan, Characterization of oxygen vacancy associates within
hydrogenated TiO2: a positron annihilation study, J. Phys.
Chem., 116 (2012) 22619–22624.
- M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced
visible light induced photocatalytic activity a combined
experimental, theoretical study, J. Appl. Phys., 114 (2013)
183514.
- W.X. Wei, W.D. Jian, L.X. Jun, Silver-doping induced lattice
distortion in TiO2 nanoparticles, Chin. Phys. Lett., 7 (2009)
77809–77814.
- M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation
and characterization of Co/TiO2 nanoparticles application to
the degradation of methyl orange, J. Iran. Chem. Soc., 7 (2010)
52–58.
- Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz,
D. Pai, J. Sankar, Synthesis and characterization of Ag–TiO2-CNT nanoparticle composites with high photocatalytic activity
under artificial light, Composites Part B, 57 (2014) 105–111.
- M.S.A. Shah, K. Zhang, A.R. Park, K.S. Kim, N.-G. Park, J.H.
Park, P.J. Yoo, Single-step solvothermal synthesis of mesoporous
Ag–TiO2-reduced grapheme oxide ternary composites with
enhanced photocatalytic activity, Nanoscale, 5 (2013) 5093–5101.
- X. Zhou, G. Liu, J. Yu, W. Fan, Surface plasmon resonancemediated
photocatalysis by noble metal-based composites
under visible light, J. Mater. Chem., 22 (2012) 21337–21354.
- S. Kumar, S. Khanchandani, M. Thirumal, A.K. Ganguli,
Achieving enhanced visible-light-driven photocatalysis using
type-II NaNbO3/CdS core/shell heterostructures, ACS Appl.
Mater. Interfaces, 6 (2014) 13221–13233.
- S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumar,
K. Srinivasan, Biosynthesis of silver nanoparticles using Citrus
sinensis peel extract and its antibacterial activity, Spectrochim.
Acta, Part A, 79 (2011) 594–598.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A.
Pierotti, Reporting physisorption data for gas/solid systems
with special reference to the determination of surface area and
porosity, Pure Appl. Chem., 57 (1985) 603–619.
- J. Li, S.K. Cushing, J. Bright, F. Meng, T.R. Senty, P. Zheng, A.D.
Bristow, N. Wu, Ag@Cu2O core-shell nanoparticles as visiblelight
plasmonic photocatalysts, ACS Catal., 3 (2013) 47–51.
- S. Chen, Y. Hu, L. Ji, X. Jiang, X. Fu, Preparation and
characterization of direct Z-scheme photocatalyst Bi2O3/NaNbO3 and its reaction mechanism, Appl. Surf. Sci., 293 (2014)
357–366.
- J.G. Yu, G.P. Dai, B.B. Huang, Fabrication and characterization
of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2
nanotube arrays, J. Phys. Chem. C, 113 (2009) 16394–16401.
- G. Begum, J. Manna, R.K. Rana, Controlled orientation in
a bio-inspired assembly of Ag/AgCl/ZnO nanostructures
enables enhancement in visible-light-induced photocatalytic
performance, Chem. Eur. J., 18 (2012) 6847–6853.
- X. Jia, Y. Liu, J. Sun, H. Sun, Z. Su, X. Pan, R. Wang, Theoretical
investigation of the reactions of CF3CHFOCF3 with the OH
radical and Cl atom, Phys. Chem. A, 114 (2009) 417–424.
- P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H.
Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst
active under visible light, Angew. Chem., Int. Ed., 47 (2008)
7931–7933.
- H. Xu, H.M. Li, J. Xia, S. Yin, Z. Luo, L. Liu, L. Xu, One-pot
synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid, ACS Appl. Mater. Interfaces, 3 (2011)
22–29.