References

  1. L. Liu, L. Ding, Y. Liu, W. An, Sh. Lin, Y. Liang, W. Cui, A stable Ag3PO4@PANI core@shell hybrid: enrichment photocatalytic degradation with π-π conjugation, Appl. Catal., B, 201 (2017) 92–104.
  2. L. Liu, Y. Qi, J. Lu, Sh. Lin, W. An, Y. Liang, W. Cui, A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation, Appl. Catal., B, 183 (2016) 133–141.
  3. X. Wang, Y. Liang, W. An, J. Hu, Y. Zhu, W. Cui, Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light, Appl. Catal., B, 219 (2017) 53–62.
  4. F. Chen, W. An, L. Liu, Y. Liang, W. Cui, Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy, Appl. Catal., B, 217 (2017) 65–80.
  5. Y. Liang, Sh. Lin, L. Liu, J. Hu, W. Cui, Oil-in-water selfassembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation, Appl. Catal., B, 164 (2015) 192–203.
  6. W. Cui, W. An, L. Liu, J. Hu, Y. Liang, Novel Cu2O quantum dots coupled flower-like BiOBr for enhanced photocatalytic degradation of organic contaminant, J. Hazard. Mater., 280 (2014) 417–427.
  7. A.J. Nozik, R. Memming, Physical chemistry of semiconductor−liquid interfaces, J. Phys. Chem., 100 (1996) 13061–13078.
  8. H.Y. Zhu, Y. Lan, X.P. Gao, S.P. Ringer, Z.F. Zheng, D.Y. Song, J.C. Zhao, Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions, J. Am. Chem. Soc., 127 (2005) 6730–6736.
  9. C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole, Enhanced nitrogen doping in TiO2 nanoparticles, Nano Lett., 3 (2008) 1049–1051.
  10. R. Yuan, T. Chen, E. Fei, J. Lin, Z. Ding, J. Long, Z. Zhang, X. Fu, P. Liu, L. Wu, Surface chlorination of TiO2-based photocatalysts: a way to remarkably improve photocatalytic activity in both UV and visible region, ACS Catal., 1 (2011) 200–206.
  11. H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, Y. Lu, Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity, J. Am. Chem. Soc., 129 (2007) 4538–4539.
  12. L.Y. Hu, Y.M. Zhang, S.M. Zhang, B.X. Li, Synthesis, characterization and photocatalytic performance of mesoporous Si–N co-doped nano-spherical anatase TiO2 with high thermal stability, RSC Adv., 6 (2016) 43098–43103.
  13. Y. Wang, J. Tao, X. Wang, Zh. Wang, M. Zhang, G. He, Zh. Sun, A unique Cu2O/TiO2 nanocomposite with enhanced photocatalytic performance under visible light irradiation, Ceram. Int., 43 (2017) 4866–4872.
  14. Y. Zhang, J. Zhu, X. Yu, J. Wei, L. Hu, S. Dai, The optical and electrochemical properties of CdS/CdSe co-sensitized TiO2 solar cells prepared by successive ionic layer adsorption and reaction processes, Sol. Energy, 86 (2012) 964–971.
  15. H.J. Lee, J. Bang, J. Park, S. Kim, S.-M. Park, Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes, Chem. Mater., 22 (2010) 5636–5643.
  16. J. Shi, On the synergetic catalytic effect in heterogeneous nanocomposite catalysts, Chem. Rev., 113 (2012) 2139–2181.
  17. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films, Chem. Soc., 128 (2006) 2385–2393.
  18. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review, Ind. Eng. Chem. Res., 52 (2013) 3581–3599.
  19. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review, Nanoscale, 5 (2013) 8326–8339.
  20. M. Hosseini, S. Siffert, H. Tidahy, R. Cousin, J.-F. Lamonier, A. Aboukais, A. Vantomme, M. Roussel, B.-L. Su, Stability and deactivation of Fe-ZSM-5 zeolite catalyst for catalytic wet peroxide oxidation of phenol in a membrane reactor, Catal. Today, 122 (2007) 391–396.
  21. B. Kumar, S. Saha, A. Ganguly, A.K. Ganguli, A facile low temperature (350°C) synthesis of Cu2O nanoparticles and their electrocatalytic and photocatalytic properties, RSC Adv., 4 (2014) 12043–12049.
  22. Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, Y. Dai, Crystal faces of Cu2O and their stabilities in photocatalytic reactions, J. Phys. Chem. C, 113 (2009) 14448–14453.
  23. W.-C. Huang, L.-M. Lyu, Y.-C. Yang, M.H. Huang, Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity, J. Am. Chem. Soc., 134 (2011) 1261–1267.
  24. C. Dong, M. Zhong, T. Huang, M. Ma, D. Wortmann, M. Brajdic, I. Kelbassa, Photodegradation of methyl orange under visible light by micro-nano hierarchical Cu2O structure fabricated by hybrid laser processing and chemical dealloying, ACS Appl. Mater. Interfaces, 3 (2011) 4332–4338.
  25. Q. Wang, K. Zhu, N.R. Neale, A.J. Frank, Constructing ordered sensitized heterojunctions: bottom-up electrochemical synthesis of p-type semiconductors in oriented n-TiO2 nanotube arrays, Nano Lett., 9 (2009) 806–813.
  26. Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation, Environ. Sci. Technol., 43 (2009) 858–863.
  27. Z. Min, X. Wang, Y. Li, J. Jiang, J. Li, D. Qian, J. Li, A highly efficient visible-light-responding Cu2O-TiO2/g-C3N4 photocatalyst for instantaneous discolorations of organic dyes, Mater. Lett., 193 (2017) 18−21.
  28. H. Yuan, J. Liu, J. Li, Y. Li, X. Wang, Y. Zhang, J. Jiang, Sh. Chen, Ch. Zhao, D. Qian, Designed synthesis of a novel BiVO4–Cu2O–TiO2 as an efficient visible-light-responding photocatalyst, J. Colloid Interface Sci., 444 (2015) 58−66.
  29. J. Xing, Z. Chen, F. Xiao, X. Ma, C. Wen, Z. Li, H. Yang, Cu-Cu2O-TiO2 nanojunction systems with an unusual electronhole transportation pathway and enhanced photocatalytic properties, Chem. Asian J., 8 (2013) 1265–1270.
  30. X. Li, J. Yu, J. Low, Y. Fang, J. Xiaoc, X. Chen, Engineering heterogeneous semiconductors for solar water splitting, J. Mater. Chem. A, 6 (2015) 2485–2534.
  31. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solidstate Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nat. Mater., 5 (2006) 782–786.
  32. H. Zhu, B. Yang, J. Xu, Z. Fu, M. Wen, T. Guo, S. Fu, J. Zuo, S. Zhang, Construction of Z-scheme type CdS-Au-TiO2 hollow nanorod arrays with enhanced photocatalytic activity, Appl. Catal., B, 90 (2009) 463–469.
  33. L. Zhang, K.H. Wong, Z. Chen, J.C. Yu, J. Zhao, C. Hu, C.Y. Chang, P.K. Wong, AgBr-Ag-Bi2WO6 nanojunction system: a novel and efficient photocatalyst with double visible-light active components, Appl. Catal., A, 363 (2009) 221–229.
  34. X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, H2WO4-H2O/Ag/AgCl composite nanoplates: a plasmonic Z-scheme visible-light photocatalyst, J. Phys. Chem. C, 115 (2011) 14648–14655.
  35. L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge, ACS Catal., 2 (2012) 1677–1683.
  36. D. Xu, B. Cheng, S. Cao, J. Yu, Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation, Appl. Catal. B, 164 (2015) 380–388.
  37. X. Wang, G. Liu, Z. Chen, F. Li, L. Wang, G. Lu, Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures, Chem. Commun., 23 (2009) 3452–3454.
  38. P. Zhou, J.G. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater., 26 (2014) 4920–4935.
  39. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solidstate Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nat. Mater., 5 (2006) 782–786.
  40. K. Xie, Q. Wu, Y. Wang, W. Guo, M. Wang, L. Sun, Electrochemical construction of Z-scheme type CdS/Ag/TiO2 nanotube arrays with enhanced photocatalytic activity, Electrochem. Commun., 13 (2011) 1469–1472.
  41. X. Wang, G. Liu, L. Wang, Z. Chen, G. Lu, H. Cheng, ZnO/CdS@Cd heterostructure for effective photocatalytic hydrogen generation, Adv. Energy Mater., 2 (2012) 42–46.
  42. H. Lin, J. Cao, B. Luo, B. Xu, S. Chen, Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity, Catal. Commun., 21 (2012) 91–95.
  43. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solidstate Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nat. Mater., 5 (2006) 782–786.
  44. H. Zhu, B. Yang, J. Xu, Z. Fu, M. Wen, T. Guo, S. Fu, J. Zuo, S. Zhang, Construction of Z-scheme type CdS-Au-TiO2 hollow nanorod arrays with enhanced photocatalytic activity, Appl. Catal., B, 90 (2009) 463–463.
  45. J. Fu, Sh. Cao, J. Yu, Dual Z-scheme charge transfer in TiO2/Ag/Cu2O composite for enhanced photocatalytic hydrogen generation, J. Materiomics, 1 (2015) 124–133.
  46. U.G. Ahlborg, T.M. Thunberg, Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact, Crit. Rev. Toxicol., 7 (1980) 1–35.
  47. H.C. Lee, J.H. In, J.H. Kim, K.Y. Hwang, C.H. Lee, Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation, Korean J. Chem. Eng., 22 (2005) 882–888.
  48. D.D. Dionysiou, A.P. Khodadoust, A.M. Kern, M.T. Suidan, I. Baudin, J.M. Laîné, Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor, Appl. Catal., B, 24 (2000) 139–155.
  49. K. Arnoldsson, P.L. Andersson, P. Haglund, Formation of environmentally relevant brominated dioxins from 2,4,6,-tribromophenol via bromoperoxidase-catalyzed dimerization, Environ. Sci. Technol., 46 (2012) 7239–7244.
  50. J. Bandara, J.A. Mielczarski, A. Lopez, J. Kiwi, Sensitized degradation of chlorophenols on iron oxides induced by visible light comparison with titanium oxide, Appl. Catal., B, 34 (2001) 321–333.
  51. X.D. Jiang, Y.P. Zhang, J. Jiang, Y. Rong, Y. Wang, Y. Wu, C. Pan, Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study, J. Phys. Chem., 116 (2012) 22619–22624.
  52. M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity a combined experimental, theoretical study, J. Appl. Phys., 114 (2013) 183514.
  53. W.X. Wei, W.D. Jian, L.X. Jun, Silver-doping induced lattice distortion in TiO2 nanoparticles, Chin. Phys. Lett., 7 (2009) 77809–77814.
  54. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation and characterization of Co/TiO2 nanoparticles application to the degradation of methyl orange, J. Iran. Chem. Soc., 7 (2010) 52–58.
  55. Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz, D. Pai, J. Sankar, Synthesis and characterization of Ag–TiO2-CNT nanoparticle composites with high photocatalytic activity under artificial light, Composites Part B, 57 (2014) 105–111.
  56. M.S.A. Shah, K. Zhang, A.R. Park, K.S. Kim, N.-G. Park, J.H. Park, P.J. Yoo, Single-step solvothermal synthesis of mesoporous Ag–TiO2-reduced grapheme oxide ternary composites with enhanced photocatalytic activity, Nanoscale, 5 (2013) 5093–5101.
  57. X. Zhou, G. Liu, J. Yu, W. Fan, Surface plasmon resonancemediated photocatalysis by noble metal-based composites under visible light, J. Mater. Chem., 22 (2012) 21337–21354.
  58. S. Kumar, S. Khanchandani, M. Thirumal, A.K. Ganguli, Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures, ACS Appl. Mater. Interfaces, 6 (2014) 13221–13233.
  59. S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumar, K. Srinivasan, Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity, Spectrochim. Acta, Part A, 79 (2011) 594–598.
  60. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  61. J. Li, S.K. Cushing, J. Bright, F. Meng, T.R. Senty, P. Zheng, A.D. Bristow, N. Wu, Ag@Cu2O core-shell nanoparticles as visiblelight plasmonic photocatalysts, ACS Catal., 3 (2013) 47–51.
  62. S. Chen, Y. Hu, L. Ji, X. Jiang, X. Fu, Preparation and characterization of direct Z-scheme photocatalyst Bi2O3/NaNbO3 and its reaction mechanism, Appl. Surf. Sci., 293 (2014) 357–366.
  63. J.G. Yu, G.P. Dai, B.B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays, J. Phys. Chem. C, 113 (2009) 16394–16401.
  64. G. Begum, J. Manna, R.K. Rana, Controlled orientation in a bio-inspired assembly of Ag/AgCl/ZnO nanostructures enables enhancement in visible-light-induced photocatalytic performance, Chem. Eur. J., 18 (2012) 6847–6853.
  65. X. Jia, Y. Liu, J. Sun, H. Sun, Z. Su, X. Pan, R. Wang, Theoretical investigation of the reactions of CF3CHFOCF3 with the OH radical and Cl atom, Phys. Chem. A, 114 (2009) 417–424.
  66. P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem., Int. Ed., 47 (2008) 7931–7933.
  67. H. Xu, H.M. Li, J. Xia, S. Yin, Z. Luo, L. Liu, L. Xu, One-pot synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid, ACS Appl. Mater. Interfaces, 3 (2011) 22–29.