References
- R.K. Gautam, M.C. Chattopadhyaya, Advanced Oxidation
Process-Based Nanomaterials for the Remediation of
Recalcitrant Pollutants, Chapter 3, Nanomaterials for
Wastewater Remediation, Butterworth-Heinemann, Boston,
2016, pp. 33–48.
- B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar,
Nanomaterials-based advanced oxidation processes for
wastewater treatment: a review, Chem. Eng. Process., 109 (2016)
178–189.
- Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan,
Nanomaterials-enabled water and wastewater treatment,
NanoImpact, 3 (2016) 22–39.
- V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano, L.
Palmisano, S. Yurdakal, Overview on oxidation mechanisms of
organic compounds by TiO2 in heterogeneous photocatalysis,
J. Photochem. Photobiol., C, 13 (2012) 224–245.
- R. Ahmad, Z. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam,
J. Kim, Photocatalytic systems as an advanced environmental
remediation: recent developments, limitations and new avenues
for applications, J. Environ. Chem. Eng., 4 (2016) 4143–4164.
- P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.-H. Kim, T. Akter,
S. Kalagara, Recent advances in photocatalytic treatment of
pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
- J.S. Lee, J. Jang, Hetero-structured semiconductor nanomaterials
for photocatalytic applications, Ind. Eng. Chem. Res., 20 (2014)
363–371.
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review, Water
Res., 44 (2010) 2997–3027.
- L. Liu, H. Bai, J. Liu, D.D. Sun, Multifunctional graphene
oxide-TiO2-Ag nanocomposites for high performance water
disinfection and decontamination under solar irradiation,
J. Hazard. Mater., 261 (2013) 214–223.
- J. Fang, L. Xu, Z. Zhang, Y. Yuan, S. Cao, Z. Wang, L. Yin, Y.
Liao, C. Xue, Au@TiO2–CdS ternary nanostructures for efficient
visible-light-driven hydrogen generation, ACS Appl. Mater.
Interfaces, 5 (2013) 8088–8092.
- L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts
for organic effluent treatment: fundamentals, mechanisms and
parametric review, Renew. Sustain. Energy Rev., 76 (2017)
1393–1421.
- V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C.
Pillai, Visible-light activation of TiO2 photocatalysts: advances
in theory and experiments, J. Photochem. Photobiol., C, 25
(2015) 1–29.
- J. Chen, F. Qiu, W. Xu, S. Cao, H. Zhu, Recent progress in
enhancing photocatalytic efficiency of TiO2-based materials,
Appl. Catal., A, 495 (2015) 131–140.
- P. Zhang, M. Fujitsuka, T. Majima, Development of tailored TiO2
mesocrystals for solar driven photocatalysis, J. Energy Chem.,
25 (2016) 917–926.
- N.R. Khalid, A. Majid, M.B. Tahir, N.A. Niaz, S. Khalid,
Carbonaceous-TiO2 nanomaterials for photocatalytic
degradation of pollutants: a review, Ceram. Int., 43 (2017)
14552–14571.
- U.G. Akpan, B.H. Hameed, The advancements in sol–gel
method of doped-TiO2 photocatalysts, Appl. Catal., A, 375
(2010) 1–11.
- M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the
photocatalytic degradation of azo dyes in the presence of TiO2
doped with selective transition metals, Desalination, 276 (2011)
13–27.
- M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W.
Daud, Application of doped photocatalysts for organic
pollutant degradation: a review, J. Environ. Manage., 198
(2017) 78–94.
- C. Wen, A. Yin, W.-L. Dai, Recent advances in silver-based
heterogeneous catalysts for green chemistry processes, Appl.
Catal., B, 160 (2014) 730–741.
- A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M.
Mänttäri, M. Sillanpää, A review on catalytic applications
of Au/TiO2 nanoparticles in the removal of water pollutant,
Chemosphere, 107 (2014) 163–174.
- X. Liu, L. Pan, T. Lv, Z. Sun, CdS sensitized TiO2 film for
photocatalytic reduction of Cr(VI) by microwave-assisted
chemical bath deposition method, J. Alloys Compd., 583 (2014)
390–395.
- B. Tian, C. Li, F. Gu, H. Jiang, Synergetic effects of nitrogen
doping and Au loading on enhancing the visible-light
photocatalytic activity of nano-TiO2, Catal. Commun., 10 (2009)
925–929.
- S. Zhang, F. Peng, H. Wang, H. Yu, S. Zhang, J. Yang, H. Zhao,
Electrodeposition preparation of Ag loaded N-doped TiO2
nanotube arrays with enhanced visible light photocatalytic
performance, Catal. Commun., 12 (2011) 689–693.
- M. Xing, Y. Wu, J. Zhang, F. Chen, Effect of synergy on the visible
light activity of B, N and Fe co-doped TiO2 for the degradation
of MO, Nanoscale, 2 (2010) 1233–1239.
- V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas, G.L. Puma,
Enhancement of photocatalytic oxidation of oxalic acid by gold
modified WO3/TiO2 photocatalysts under UV and visible light
irradiation, J. Mol. Catal. A: Chem., 327 (2010) 51–57.
- E. Kowalska, R. Abe, B. Ohtani, Visible-light-induced
photocatalytic reaction of gold-modified titanium(IV) oxide
particles: action spectrum analysis, Chem. Commun., 2 (2009)
241–243.
- Z. Xiong, J. Ma, W.J. Ng, T.D. Waite, X.S. Zhao, Silver-modified
mesoporous TiO2 photocatalyst for water purification, Water
Res., 45 (2011) 2095–2103.
- M.V. Dozzi, L. Prati, P. Canton, E. Selli, Effects of gold
nanoparticles deposition on the photocatalytic activity of
titanium dioxide under visible light, Phys. Chem. Chem. Phys.,
11 (2009) 7171–7180.
- X. Wang, R.A. Caruso, Enhancing photocatalytic activity of
titania materials by using porous structures and the addition of
gold nanoparticles, J. Mater. Chem., 21 (2011) 20–28.
- G. Jiang, X. Wang, Z. Wei, X. Li, X. Xi, R. Hu, B. Tang, R.
Wang, S. Wang, T. Wang, W. Chen, Photocatalytic properties
of hierarchical structures based on Fe-doped BiOBr hollow
microspheres, J. Mater. Chem., A, 1 (2013) 2406–2410.
- G. Jiang, B. Tang, X. Li, Z. Wei, X. Wang, W. Chen, J. Wan, L.
Shen, Preparation of Ag-modified Zn2GeO4 nanorods for photodegradation
of organic pollutants, Powder Technol., 251 (2014)
37–40.
- G. Jiang, R. Wang, X. Wang, X. Xi, R. Hu, Y. Zhou, S. Wang,
T. Wang, W. Chen, Novel highly active visible-light-induced
photocatalysts based on BiOBr with Ti doping and Ag
decorating, ACS Appl. Mater. Interfaces, 4 (2012) 4440–4444.
- W. Fan, M. Leung, Recent development of plasmonic resonancebased
photocatalysis and photovoltaics for solar utilization,
Molecules, 21 (2016) 180.
- W. Hou, S.B. Cronin, A review of surface plasmon resonanceenhanced
photocatalysis, Adv. Funct. Mater., 23 (2013) 1612–1619.
- P. Nyamukamba, L. Tichagwa, J.C. Ngila, L. Petrik, Plasmonic
metal decorated titanium dioxide thin films for enhanced
photodegradation of organic contaminants, J. Photochem.
Photobiol., A, 343 (2017) 85–95.
- J. Augustynski, K. Bienkowski, R. Solarska, Plasmon resonanceenhanced
photoelectrodes and photocatalysts, Coord. Chem.
Rev., 325 (2016) 116–124.
- J.G. Smith, J.A. Faucheaux, P.K. Jain, Plasmon resonances for
solar energy harvesting: a mechanistic outlook, Nano Today, 10
(2015) 67–80.
- K. Matiullah, Y. Zeng, U. Fawad, M. Wazir, N. Abdul, Z.
Muhammad Iqbal, U. Asad, Enhancing the photoactivity of
TiO2 by codoping with silver and molybdenum: the effect of
dopant concentration on the photoelectrochemical properties,
Mater. Res. Express, 4 (2017) 045023.
- A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari,
M. Atarod, Photocatalytic degradation of azo dyes by titanium
dioxide supported silver nanoparticles prepared by a green
method using Carpobrotus acinaciformis extract, J. Alloys
Compd., 689 (2016) 15–20.
- E. Albiter, M.A. Valenzuela, S. Alfaro, G. Valverde-Aguilar, F.M.
Martínez-Pallares, Photocatalytic deposition of Ag nanoparticles
on TiO2: metal precursor effect on the structural and photoactivity
properties, J. Saudi Chem. Soc., 19 (2015) 563–573.
- J. Ginter, A. Kisielewska, K. Spilarewicz-Stanek, M. Cichomski,
D. Batory, I. Piwoński, Tuning of the photocatalytic activity
of thin titanium dioxide coatings by highly ordered structure
and silver nanoparticles, Microporous Mesoporous Mater., 225
(2016) 580–589.
- M.F. Abdel Messih, M.A. Ahmed, A. Soltan, S.S. Anis, Facile
approach for homogeneous dispersion of metallic silver
nanoparticles on the surface of mesoporous titania for
photocatalytic degradation of methylene blue and indigo
carmine dyes, J. Photochem. Photobiol., A, 335 (2017) 40–51.
- Z. Sarteep, A. Ebrahimian Pirbazari, M.A. Aroon, Silver doped
TiO2 nanoparticles: preparation, characterization and efficient
degradation of 2,4-dichlorophenol under visible light, J. Water
Environ. Nanotechnol., 1 (2016) 135–144.
- Y. Yang, H. Li, F. Hou, J. Hu, X. Zhang, Y. Wang, Facile synthesis
of ZnO/Ag nanocomposites with enhanced photocatalytic
properties under visible light, Mater. Lett., 180 (2016) 97–100.
- L. Gomathi Devi, R. Kavitha, A review on plasmonic metal/TiO2
composite for generation, trapping, storing and dynamic vectorial
transfer of photogenerated electrons across the Schottky junction
in a photocatalytic system, Appl. Surf. Sci., 360 (2016) 601–622.
- I. Gehrke, A. Geiser, A. Somborn-Schulz, Innovations in
nanotechnology for water treatment, Nanotechnol. Sci. Appl., 8
(2015) 1–17.
- G. Shan, S. Yan, R.D. Tyagi, Y. Surampalli Rao, C. Zhang Tian,
Applications of nanomaterials in environmental science and
engineering: review, J. Hazard. Toxic Radioact. Waste, 13 (2009)
110–119.
- C. Wang, H. Liu, Y. Qu, TiO2-based photocatalytic process
for purification of polluted water: bridging fundamentals to
applications, J. Nanomater., 2013 (2013) 1.
- J. Gómez-Pastora, S. Dominguez, E. Bringas, M.J. Rivero, I.
Ortiz, D.D. Dionysiou, Review and perspectives on the use of
magnetic nanophotocatalysts (MNPCs) in water treatment,
Chem. Eng. J., 310 (2017) 407–427.
- M. Shekofteh-Gohari, A. Habibi-Yangjeh, Fe3O4/ZnO/CoWO4
nanocomposites: novel magnetically separable visible-lightdriven
photocatalysts with enhanced activity in degradation of
different dye pollutants, Ceram. Int., 43 (2017) 3063–3071.
- A. Habibi-Yangjeh, M. Shekofteh-Gohari, Novel magnetic
Fe3O4/ZnO/NiWO4 nanocomposites: enhanced visible-light
photocatalytic performance through p-n heterojunctions, Sep.
Purif. Technol., 184 (2017) 334–346.
- M. Mousavi, A. Habibi-Yangjeh, Novel magnetically separable
g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites: visible-lightdriven
photocatalysts with highly enhanced activity, Adv.
Powder Technol., 28 (2017) 1540–1553.
- M. Mousavi, A. Habibi-Yangjeh, Magnetically separable ternary
g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven
photocatalysts based on graphitic carbon nitride, J. Colloid
Interface Sci., 465 (2016) 83–92.
- A. Akhundi, A. Habibi-Yangjeh, Facile preparation of
novel quaternary g-C3N4/Fe3O4/AgI/Bi2S3 nanocomposites:
magnetically separable visible-light-driven photocatalysts
with significantly enhanced activity, RSC Adv., 6 (2016)
106572–106583.
- Z.-Q. Li, H.-L. Wang, L.-Y. Zi, J.-J. Zhang, Y.-S. Zhang,
Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation,
Ceram. Int., 41 (2015) 10634–10643.
- J. Zhan, H. Zhang, G. Zhu, Magnetic photocatalysts of
cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles
decorated with Ag nanopartilces, Ceram. Int., 40 (2014)
8547–8559.
- T. Xin, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu, Q. Zhang,
A facile approach for the synthesis of magnetic separable
Fe3O4@TiO2, core–shell nanocomposites as highly recyclable
photocatalysts, Appl. Surf. Sci., 288 (2014) 51–59.
- U.G. Ahlborg, T.M. Thunberg, H.C. Spencer, Chlorinated
phenols: occurrence, toxicity, metabolism, and environmental
impact, CRC Crit. Rev. Toxicol., 7 (1980) 1–35.
- H.-C. Lee, J.-H. In, J.-H. Kim, K.-Y. Hwang, C.-H. Lee,
Kinetic analysis for decomposition of 2,4-dichlorophenol by
supercritical water oxidation, Korean J. Chem. Eng., 22 (2005)
882–888.
- D.D. Dionysiou, A.P. Khodadoust, A.M. Kern, M.T. Suidan,
I. Baudin, J.-M. Laîné, Continuous-mode photocatalytic
degradation of chlorinated phenols and pesticides in water
using a bench-scale TiO2 rotating disk reactor, Appl. Catal., B,
24 (2000) 139–155.
- K. Arnoldsson, P.L. Andersson, P. Haglund, Formation
of environmentally relevant brominated dioxins from
2,4,6,-tribromophenol via bromoperoxidase-catalyzed
dimerization, Environ. Sci. Technol., 46 (2012) 7239–7244.
- J. Bandara, J.A. Mielczarski, A. Lopez, J. Kiwi, 2. Sensitized
degradation of chlorophenols on iron oxides induced by visible
light: comparison with titanium oxide, Appl. Catal., B, 34 (2001)
321–333.
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst,
R.N. Muller, Magnetic iron oxide nanoparticles: synthesis,
stabilization, vectorization, physicochemical characterizations,
and biological applications, Chem. Rev., 108 (2008) 2064–2110.
- C.A. Huerta Aguilar, T. Pandiyan, J.A. Arenas-Alatorre, N.
Singh, Oxidation of phenols by TiO2Fe3O4M (M=Ag or Au)
hybrid composites under visible light, Sep. Purif. Technol., 149
(2015) 265–278.
- Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Synthesis of
Fe3O4 nanoparticles using controlled ammonia vapor diffusion
under ultrasonic irradiation, Ind. Eng. Chem. Res., 50 (2011)
3534–3539.
- J. Lu, M. Wang, C. Deng, X. Zhang, Facile synthesis of Fe3O4@mesoporous TiO2 microspheres for selective enrichment of
phosphopeptides for phosphoproteomics analysis, Talanta, 105
(2013) 20–27.
- L. Yinghua, W. Huan, L. Li, C. Wenquan, Facile synthesis of
Ag@AgCl plasmonic photocatalyst and its photocatalytic
degradation under visible light, Rare Metal Mat. Eng., 44 (2015)
1088–1093.
- M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced
visible light induced photocatalytic activity: a combined
experimental and theoretical study, J. Appl. Phys., 114 (2013)
183514.
- M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation
and characterization of Co/TiO2 nanoparticles: application to
the degradation of methyl orange, J. Iran. Chem. Soc., 7 (2010)
S52–S58.
- Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz,
D. Pai, J. Sankar, Synthesis and characterization of Ag–TiO2–CNT nanoparticle composites with high photocatalytic activity
under artificial light, Composites Part B, 57 (2014) 105–111.
- M.S. Arif Sher Shah, K. Zhang, A.R. Park, K.S. Kim, N.-G.
Park, J.H. Park, P.J. Yoo, Single-step solvothermal synthesis
of mesoporous Ag-TiO2-reduced graphene oxide ternary
composites with enhanced photocatalytic activity, Nanoscale, 5
(2013) 5093–5101.
- X. Zhou, G. Liu, J. Yu, W. Fan, Surface plasmon resonancemediated
photocatalysis by noble metal-based composites
under visible light, J. Mater. Chem., 22 (2012) 21337–21354.
- M. Guo, J. Du, First-principles study of electronic structures
and optical properties of Cu, Ag, and Au-doped anatase TiO2,
Physica B, 407 (2012) 1003–1007.
- N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag
particles doped TiO2 for efficient photodegradation of Direct
azo dyes, J. Mol. Catal. A: Chem., 258 (2006) 124–132.
- S. Kumar, S. Khanchandani, M. Thirumal, A.K. Ganguli,
Achieving enhanced visible-light-driven photocatalysis using
type-II NaNbO3/CdS core/shell heterostructures, ACS Appl.
Mater. Interfaces, 6 (2014) 13221–13233.
- S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary,
K. Srinivasan, Biosynthesis of silver nanoparticles using citrus
sinensis peel extract and its antibacterial activity, Spectrochim.
Acta, Part A, 79 (2011) 594–598.
- K.S.W. Sing, Reporting physisorption data for gas/solid systems
with special reference to the determination of surface area and
porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985)
603–619.
- Z. Teng, X. Su, G. Chen, C. Tian, H. Li, L. Ai, G. Lu,
Superparamagnetic high-magnetization composite
microspheres with Fe3O4@SiO2 core and highly crystallized
mesoporous TiO2 shell, Colloids Surf., A, 402 (2012) 60–65.
- K.H. Leong, B.L. Gan, S. Ibrahim, P. Saravanan, Synthesis
of surface plasmon resonance (SPR) triggered Ag/TiO2
photocatalyst for degradation of endocrine disturbing
compounds, Appl. Surf. Sci., 319 (2014) 128–135.
- S.J. Yeo, H. Kang, Y.H. Kim, S. Han, P.J. Yoo, Layer-by-layer
assembly of polyelectrolyte multilayers in three-dimensional
inverse opal structured templates, ACS Appl. Mater. Interfaces,
4 (2012) 2107–2115.
- M. Asiltürk, F. Sayılkan, E. Arpaç, Effect of Fe3+ ion doping to
TiO2 on the photocatalytic degradation of Malachite Green dye
under UV and vis-irradiation, J. Photochem. Photobiol., A, 203
(2009) 64–71.
- K. Koci, K. Zatloukalova, L. Obalova, S. Krejcikova, Z.
Lacny, L. Čapek, A. Hospodkova, O. Šolcova, Wavelength
effect on photocatalytic reduction of CO2 by Ag/TiO2 catalyst,
Chin. J. Catal., 32 (2011) 812–815.
- X. Yang, T. Xiao, P.P. Edwards, The use of products from CO2
photoreduction for improvement of hydrogen evolution in
water splitting, Int. J. Hydrogen Energy, 36 (2011) 6546–6552.
- L. Wu, A. Li, G. Gao, Zh. Fei, Sh. Xu, Q. Zhang, Efficient
photodegradation of 2,4-dichlorophenol in aqueous
solution catalyzed by polydivinylbenzene-supported zinc
phthalocyanine, J. Mol. Catal. A: Chem., 269 (2007) 183–189.