References

  1. J. Kaur, S. Singhal, Heterogeneous photocatalytic degradation of Rose Bengal: effect of operational parameters, Physica B, 450 (2014) 49–53.
  2. M.A. Fox, D.F. Duxbury, The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media, Chem. Rev., 93 (1993) 381–433.
  3. S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
  4. W. Azmi, R.K. Sani, U.C. Banerjee, Biodegradation of triphenylmethane dyes, Enzyme Microb. Technol., 22 (1998) 185–191.
  5. O.K. Dalrymple, D.H. Yeh, M.A. Trotz, Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis, J. Chem. Technol. Biotechnol., 82 (2007) 121–134.
  6. F. Deng, L. Min, X. Luo, S. Wu, S. Luo, Visible-light photocatalytic degradation performances and thermal stability due to the synergetic effect of TiO2 with conductive copolymers of polyaniline and polypyrrole, Nanoscale, 5 (2013) 8703–8710.
  7. S. Xu, Y. Zhu, L. Jiang, Y. Dan, Visible light induced photocatalytic degradation of methyl orange by polythiophene/TiO2 composite particles, Water, Air, Soil Pollut., 213 (2010) 151–159.
  8. Y. Park, S. Lee, S.O. Kang, W. Choi, Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light, Chem. Commun., 46 (2010) 2477–2479.
  9. M. Saquib, M. Muneer, TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions, Dyes Pigm., 56 (2003) 37–49.
  10. X. Li, G. Liu, J. Zhao, Two competitive primary processes in the photodegradation of cationic triaryl methane dyes under visible irradiation in TiO2 dispersions, New J. Chem., 23 (1999) 1193–1196.
  11. C.C. Chen, C.S. Lu, Photocatalytic degradation of Basic Violet 4: degradation efficiency, product distribution, and mechanisms, J. Phys. Chem. C, 111 (2007) 13922–13932.
  12. M. Okano, K. Itoh, A. Fujishima, K. Honda, Photoelectrochemical polymerization of pyrrole on TiO2 and its application to conducting pattern generation, J. Electrochem. Soc., 134 (1987) 837–841.
  13. B. Wang, C. Li, J. Pang, X. Qing, J. Zhai, Q. Li, Novel polypyrrolesensitized hollow TiO2/fly ash cenospheres: synthesis, characterization, and photocatalytic ability under visible light, Appl. Surf. Sci., 258 (2012) 9989–9996.
  14. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891–2959.
  15. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735–758.
  16. R.J. Davis, J.L. Gainer, G.O. Neal, I.W. Wu, Photocatalytic decolorization of wastewater dyes, Water Environ. Res., 66 (1994) 50–53.
  17. S. Mozia, A.W. Morawski, M. Toyoda, M. Inagaki, Application of anatase-phase TiO2 for decomposition of azo dye in a photocatalytic membrane reactor, Desalination, 241 (2009) 97–105.
  18. H. Tai, Y. Jiang, G. Xie, J. Yu, M. Zhao, Self-assembly of TiO2/polypyrrole nanocomposite ultrathin films and application for an NH3 gas sensor, Int. J. Environ. Anal. Chem., 87 (2007) 539–551.
  19. C.M. Ng, P.C. Chen, S. Manickam, Hydrothermal crystallization of titania on silver nucleation sites for the synthesis of visible light nano-photocatalysts—enhanced photoactivity using Rhodamine 6G, App. Catal., A, 433–434 (2012) 75–80.
  20. P.V. Kamat, K. Vinodgopal, D.E. Wynkoop, Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light, Environ. Sci. Technol., 30 (1996) 1660–1666.
  21. H. Huang, M. Gan, L. Ma, L. Yu, H. Hu, F. Yang, Y. Li, C. Ge, Fabrication of polyaniline/graphen/titania nanotube arrays nanocomposites and their application in supercapacitors, J. Alloys Compd., 630 (2015) 214–221.
  22. Y. Li, Y. Yu, L. Wu, J. Zhi, Processable polyaniline/titania nanocomposites with good photocatalytic and conductivity properties prepared via peroxo-titanium complex catalyzed emulsion polymerization approach, Appl. Surf. Sci., 273 (2013) 135–143.
  23. Y. Yang, J. Wen, J. Wei, R. Xiong, J. Shi, C. Pan, Polypyrroledecorated Ag–TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination, Appl. Mater. Interfaces, 5 (2013) 6201–6207.
  24. M. Vautier, C. Guillard, J.M. Herrmann, Photocatalytic degradation of dyes in water: case study of Indigo and of Indigo Carmine, J. Catal., 201 (2001) 46–59.
  25. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Lett., 6 (2006) 215–218.
  26. T.L. Thompson, J.T. Yates, Surface science studies of the photoactivation of TiO2 new photochemical processes, Chem. Rev., 106 (2006) 4428–4453.
  27. A. Kaur, Y.R. Smith, V.R. Subramanian, Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires, Environ. Sci. Technol., 43 (2009) 3260–3265.
  28. W. Baran, A. Makowski, W. Wardas, The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspensions, Chemosphere, 53 (2003) 87–95.
  29. S. Wei, P. Mavinakuli, Q. Wang, D. Chen, R. Asapu, Y. Mao, N. Haldolaarachchige, D.P. Young, Z. Guo, Polypyrroletitania nanocomposites derived from different oxidants, J. Electrochem. Soc., 158 (2011) K205–K212.
  30. J.S. Miller, Rose Bengal-sensitized photooxidation of 2-chlorophenol in water using solar simulated light, Water Res., 39 (2005) 412–422.
  31. B. Pare, P. Singh, S.B. Jonnalgadda, Degradation and mineralization of Victoria Blue B dye in a slurry photo reactor using advanced oxidation process, J. Sci. Ind. Res., 68 (2009) 724–729.
  32. J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, Highly efficient formation of visible light tunable TiO2-XnX photocatalysts and their transformation at the nanoscale, J. Phys. Chem. B, 108 (2004) 1230–1240.
  33. J.D. Kwon, P.H. Kim, J.H. Keum, J.S. Kim, Polypyrrole/titania hybrids: synthetic variation and test for the photovoltaic materials, Sol. Energy Mater. Sol. Cells, 83 (2004) 311–321.
  34. D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Sunlight photocatalytic activity of polypyrrole–TiO2 nanocomposites prepared by ‘in situ’ method, Catal. Commun., 9 (2008) 1162–1166.
  35. H.C. Liang, X.Z. Li, Visible-induced photocatalytic reactivity of polymer–sensitized titania nanotube films, Appl. Catal., B, 86 (2009) 8–17.
  36. C. Ferreira, S. Domenech, P. Lacaze, Synthesis and characterization of poly-pyrrole/TiO2 composites on mild steel, J. Appl. Electrochem., 31 (2001) 49–56.
  37. L. Sun, Y. Shi, B. Li, X. Li, Y. Wang, Preparation and characterization of polypyrrole/TiO2 nanocomposites by reverse microemulsion polymerization and its photocatalytic activity for the degradation of methyl orange under natural light, Polym. Compos., 34 (2013) 1076–1080.
  38. Z. Guo, K. Shin, A.B. Karki, D.P. Young, R.B. Kaner, H.T. Hahn, Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites, J. Nanopart. Res., 11 (2009) 1441–1452.
  39. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  40. F. Denga, Y. Li, X. Luo, L. Yang, X. Tu, Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation, Colloids Surf., A, 395 (2012) 183–189.
  41. M.C. Arenas, L.F. Nunez, D. Rangel, O.M. Alvarez, C.M. Alonso, V.M. Castano, Simple one-step ultrasonic synthesis of anatase titania/polypyrrole nanocomposites, Ultrason. Sonochem., 20 (2013) 777–784.
  42. M. Sedla, M. Mrlik, V. Pavlinek, P. Saha, O. Quadrat, Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles, Colloid. Polym. Sci., 290 (2012) 41–48.
  43. K. Singh, R. Bharose, S.K. Verma, V.K. Singh, Potential of powdered activated mustard cake for decolorising raw sugar, J. Sci. Food Agric., 93 (2013) 157–165.
  44. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Appl. Catal., B, 39 (2002) 75–90.
  45. G.A. Epling, C. Lin, Photoassisted bleaching of dyes utilizing TiO2 and visible light, Chemosphere, 46 (2002) 561–570.
  46. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice-Hall, Inc., New Jersey, 2001.
  47. M. Hema, A.Y. Arasi, P. Tamilselvi, R. Anbarasan, Titania nanoparticles synthesized by sol–gel technique, Chem. Sci. Trans., 2 (2013) 239–245.
  48. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int. J. Electrochem. Sci., 7 (2012) 4871–4888.
  49. L. Cavigli, F. Bogani, A. Vinattieri, V. Faso, G. Baldi, Volume versus surface-mediated recombination in anatase TiO2 nanoparticles, J. Appl. Phys., 106 (2009) 053516.
  50. S. Yang, X. Yang, X. Shao, R. Niu, L. Wang, Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature, J. Hazard. Mater., 186 (2011) 659–666.
  51. K.M. Reddy, S.V. Manorama, A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys., 78 (2002) 239–245.
  52. S. Bashir, J. Liu, H. Zhang, X. Sun, J. Guo, Band gap evaluations of metal-inserted titania nanomaterials, J. Nanopart. Res., 15 (2013) 1572.
  53. J. Guo, Interface science in nanoparticles: an electronic structure view of photon-in/photon-out soft-X-ray spectroscopy, Int. J. Quantum Chem., 109 (2009) 2714–2721.
  54. A. Achilleos, E. Hapeshi, N.P. Xekoukoulotakis, D. Mantzavinos, D.F. Kassinos, Factors affecting diclofenac decomposition in water by UV-A/TiO2 photo-catalysis, Chem. Eng. J., 161 (2010) 53–59.
  55. K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci., 7 (2017) 1569–1578.
  56. E. Vulliet, J.M. Chovelon, C. Guillard, J.M. Herrmann, Factors influencing the photo-catalytic degradation of sulfonylurea herbicides by TiO2 aqueous suspension, J. Photochem. Photobiol., A, 159 (2003) 71–79.
  57. K. Bubacz, J. Choina, D. Dolat, A.W. Morawski, Methylene blue and phenol photo-catalytic degradation on nanoparticles of anatase TiO2, Pol. J. Environ. Stud., 19 (2010) 685–691.
  58. C.M. Ling, A.R. Mohamed, S. Bhatia, Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream, Chemosphere, 57 (2004) 547–554.
  59. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M. Herrmann, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2, J. Photochem. Photobiol., A, 158 (2003) 27–36.
  60. B. Zielinska, J. Grzechulska, R.J. Kalenczuk, A.W. Morawski, The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide, Appl. Catal., B, 45 (2003) 293–300.
  61. S. Senthilkumaar, K. Porkodi, R. Gomathi, A.G. Maheswari, N. Manonmani, Sol–gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution, Dyes Pigm., 69 (2006) 22–30.
  62. S.K. Kansal, N. Kaur, S. Singh, Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts, Nanoscale Res. Lett., 4 (2009) 709–716.
  63. K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes, Water Res., 34 (2000) 327–333.
  64. J. Grzechulska, A.W. Morawski, Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide, Appl. Catal., B, 36 (2002) 45–51.
  65. E. Vulliet, J.M. Chovelon, C. Guillard, J.M. Herrmann, Factors influencing the photocatalytic degradation of sulfonylurea herbicides by TiO2 aqueous suspension, J. Photochem. Photobiol., A, 159 (2003) 71–79.
  66. L. Zhang, W. Zhang, R. Li, H. Zhong, Y. Zhao, Y. Zhang, X. Wang, Photo degradation of methyl orange by attapulgite–SnO2–TiO2 nanocomposites, J. Hazard. Mater., 171 (2009) 294–300.
  67. D. Chen, A.K. Ray, Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2, Appl. Catal., B, 23 (1999) 143–157.
  68. S. Ameen, H.K. Seo, M.S. Akhtar, H.S. Shin, Novel graphene/polyaniline nano-composites and its photocatalytic activity toward the degradation of Rose Bengal dye, Chem. Eng. J., 210 (2012) 220–228.
  69. T. Sinha, M. Ahmaruzzaman, Photocatalytic decomposition behavior and reaction pathways of organic compounds using Cu nanoparticles synthesized via a green route, Photochem. Photobiol. Sci., 15 (2016) 1272–1281.
  70. L. Zang, C.Y. Liu, X.M. Ren, Photochemistry of semiconductor particles. Part 4. Effects of surface condition on the photodegradation of 2,4-dichlorophenol catalysed by TiO2 suspensions, J. Chem. Soc., Faraday Trans., 91 (1995) 917–923.
  71. F.D. Mai, C.S. Lu, C.W. Wu, C.H. Huang, J.Y. Chen, C.C. Chen, Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2, Sep. Purif. Technol., 62 (2008) 423–436.
  72. B.D. Credico, I.R. Bellobono, M. D’Arienzo, D. Fumagalli, M. Redaelli, R. Scotti, F. Morazzon, Efficacy of the reactive oxygen species generated by immobilized TiO2 in the photocatalytic degradation of diclofenac, Int. J. Photoenergy, 2015 (2015) 1–13.
  73. J. Eriksson, J. Svanfelt, L. Kronberg, A photochemical study of diclofenac and its major transformation products, Photochem. Photobiol., 86 (2010) 528–532.
  74. J. Zhang, Y. Nosaka, Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types, J. Phys. Chem. C, 118 (2014) 10824–10832.
  75. R.W. Matthews, Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide, J. Catal., 111 (1988) 264–272.
  76. R. Zepp, D. Crosby, A, Lewis Publs., CRC Press, Boca Raton, Florida, Chapter 22 (1994) 317–348.
  77. S. Yang, X. Yang, X. Shao, R. Niu, L. Wang, Activated carbon catalyzed persulfate oxidation of azo dye acid orange 7 at ambient temperature, J. Hazard. Mater., 186 (2011) 659–666.
  78. N. Guettaı, H.A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: Kinetics study, Desalination, 185 (2005) 439–448.
  79. E. Kordouli, K. Bourikas, A. Lycourghiotis, C. Kordulis, The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios, Catal. Today, 252 (2015) 128–135.
  80. I.K. Konstantinou, T.A. Albanis TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetics and mechanistic investigations. A review, Appl. Catal., B, 49 (2004) 1–14.
  81. A.F. Júnior, E.C. de Oliveira Lima, A.N. Miguel, P.R. Wells, Synthesis of nanoparticles of CoxFe(3−x)O4 by combustion reaction method, J. Magn. Magn. Mater., 308 (2007) 198–202.
  82. M.A. Abu-Hassan, J.K. Kim, I.S. Metcalfe, D. Mantzavinos, Kinetics of low frequency sonodegradation of linear alkylbenzene sulfonate solutions, Chemosphere, 62 (2006) 749–755.
  83. N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Colloid Interface Sci., 295 (2006) 159–164.
  84. G.M. Liu, X.Z. Li, J.C. Zhao, S. Horikoshi, H. Hidaka, Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination, J. Mol. Catal. A: Chem., 153 (2000) 221–229.
  85. C. Galindo, P. Jacques, A. Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: comparative mechanistic and kinetic investigations, J. Photochem. Photobiol. A, 130 (2000) 35–47.