References
- J. Kaur, S. Singhal, Heterogeneous photocatalytic degradation
of Rose Bengal: effect of operational parameters, Physica B, 450
(2014) 49–53.
- M.A. Fox, D.F. Duxbury, The photochemistry and photophysics
of triphenylmethane dyes in solid and liquid media, Chem.
Rev., 93 (1993) 381–433.
- S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation
of two commercial dyes in aqueous phase using different
photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
- W. Azmi, R.K. Sani, U.C. Banerjee, Biodegradation of
triphenylmethane dyes, Enzyme Microb. Technol., 22 (1998)
185–191.
- O.K. Dalrymple, D.H. Yeh, M.A. Trotz, Removing
pharmaceuticals and endocrine-disrupting compounds from
wastewater by photocatalysis, J. Chem. Technol. Biotechnol., 82
(2007) 121–134.
- F. Deng, L. Min, X. Luo, S. Wu, S. Luo, Visible-light
photocatalytic degradation performances and thermal
stability due to the synergetic effect of TiO2 with conductive
copolymers of polyaniline and polypyrrole, Nanoscale,
5 (2013) 8703–8710.
- S. Xu, Y. Zhu, L. Jiang, Y. Dan, Visible light induced
photocatalytic degradation of methyl orange by polythiophene/TiO2 composite particles, Water, Air, Soil Pollut., 213 (2010)
151–159.
- Y. Park, S. Lee, S.O. Kang, W. Choi, Organic dye-sensitized TiO2
for the redox conversion of water pollutants under visible light,
Chem. Commun., 46 (2010) 2477–2479.
- M. Saquib, M. Muneer, TiO2-mediated photocatalytic
degradation of a triphenylmethane dye (gentian violet), in
aqueous suspensions, Dyes Pigm., 56 (2003) 37–49.
- X. Li, G. Liu, J. Zhao, Two competitive primary processes in
the photodegradation of cationic triaryl methane dyes under
visible irradiation in TiO2 dispersions, New J. Chem., 23 (1999)
1193–1196.
- C.C. Chen, C.S. Lu, Photocatalytic degradation of Basic Violet 4:
degradation efficiency, product distribution, and mechanisms,
J. Phys. Chem. C, 111 (2007) 13922–13932.
- M. Okano, K. Itoh, A. Fujishima, K. Honda, Photoelectrochemical
polymerization of pyrrole on TiO2 and its application to
conducting pattern generation, J. Electrochem. Soc., 134 (1987)
837–841.
- B. Wang, C. Li, J. Pang, X. Qing, J. Zhai, Q. Li, Novel polypyrrolesensitized
hollow TiO2/fly ash cenospheres: synthesis,
characterization, and photocatalytic ability under visible light,
Appl. Surf. Sci., 258 (2012) 9989–9996.
- X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis,
properties, modifications, and applications, Chem. Rev., 107
(2007) 2891–2959.
- A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2
surfaces: principles, mechanisms, and selected results, Chem.
Rev., 95 (1995) 735–758.
- R.J. Davis, J.L. Gainer, G.O. Neal, I.W. Wu, Photocatalytic
decolorization of wastewater dyes, Water Environ. Res., 66
(1994) 50–53.
- S. Mozia, A.W. Morawski, M. Toyoda, M. Inagaki, Application
of anatase-phase TiO2 for decomposition of azo dye in a
photocatalytic membrane reactor, Desalination, 241 (2009)
97–105.
- H. Tai, Y. Jiang, G. Xie, J. Yu, M. Zhao, Self-assembly of TiO2/polypyrrole nanocomposite ultrathin films and application
for an NH3 gas sensor, Int. J. Environ. Anal. Chem., 87 (2007)
539–551.
- C.M. Ng, P.C. Chen, S. Manickam, Hydrothermal crystallization
of titania on silver nucleation sites for the synthesis of visible
light nano-photocatalysts—enhanced photoactivity using
Rhodamine 6G, App. Catal., A, 433–434 (2012) 75–80.
- P.V. Kamat, K. Vinodgopal, D.E. Wynkoop, Environmental
photochemistry on semiconductor surfaces: photosensitized
degradation of a textile azo dye, acid orange 7, on TiO2 particles
using visible light, Environ. Sci. Technol., 30 (1996) 1660–1666.
- H. Huang, M. Gan, L. Ma, L. Yu, H. Hu, F. Yang, Y. Li, C. Ge,
Fabrication of polyaniline/graphen/titania nanotube arrays
nanocomposites and their application in supercapacitors, J.
Alloys Compd., 630 (2015) 214–221.
- Y. Li, Y. Yu, L. Wu, J. Zhi, Processable polyaniline/titania
nanocomposites with good photocatalytic and conductivity
properties prepared via peroxo-titanium complex catalyzed
emulsion polymerization approach, Appl. Surf. Sci., 273 (2013)
135–143.
- Y. Yang, J. Wen, J. Wei, R. Xiong, J. Shi, C. Pan, Polypyrroledecorated
Ag–TiO2 nanofibers exhibiting enhanced
photocatalytic activity under visible-light illumination, Appl.
Mater. Interfaces, 5 (2013) 6201–6207.
- M. Vautier, C. Guillard, J.M. Herrmann, Photocatalytic
degradation of dyes in water: case study of Indigo and of Indigo
Carmine, J. Catal., 201 (2001) 46–59.
- G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes,
Use of highly-ordered TiO2 nanotube arrays in dye-sensitized
solar cells, Nano Lett., 6 (2006) 215–218.
- T.L. Thompson, J.T. Yates, Surface science studies of the
photoactivation of TiO2 new photochemical processes, Chem.
Rev., 106 (2006) 4428–4453.
- A. Kaur, Y.R. Smith, V.R. Subramanian, Improved photocatalytic
degradation of textile dye using titanium dioxide nanotubes
formed over titanium wires, Environ. Sci. Technol., 43 (2009)
3260–3265.
- W. Baran, A. Makowski, W. Wardas, The influence of FeCl3 on
the photocatalytic degradation of dissolved azo dyes in aqueous
TiO2 suspensions, Chemosphere, 53 (2003) 87–95.
- S. Wei, P. Mavinakuli, Q. Wang, D. Chen, R. Asapu, Y. Mao,
N. Haldolaarachchige, D.P. Young, Z. Guo, Polypyrroletitania
nanocomposites derived from different oxidants, J.
Electrochem. Soc., 158 (2011) K205–K212.
- J.S. Miller, Rose Bengal-sensitized photooxidation of
2-chlorophenol in water using solar simulated light, Water Res.,
39 (2005) 412–422.
- B. Pare, P. Singh, S.B. Jonnalgadda, Degradation and
mineralization of Victoria Blue B dye in a slurry photo reactor
using advanced oxidation process, J. Sci. Ind. Res., 68 (2009)
724–729.
- J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, Highly efficient
formation of visible light tunable TiO2-XnX photocatalysts and
their transformation at the nanoscale, J. Phys. Chem. B, 108
(2004) 1230–1240.
- J.D. Kwon, P.H. Kim, J.H. Keum, J.S. Kim, Polypyrrole/titania
hybrids: synthetic variation and test for the photovoltaic
materials, Sol. Energy Mater. Sol. Cells, 83 (2004) 311–321.
- D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Sunlight
photocatalytic activity of polypyrrole–TiO2 nanocomposites
prepared by ‘in situ’ method, Catal. Commun., 9 (2008) 1162–1166.
- H.C. Liang, X.Z. Li, Visible-induced photocatalytic reactivity of
polymer–sensitized titania nanotube films, Appl. Catal., B, 86
(2009) 8–17.
- C. Ferreira, S. Domenech, P. Lacaze, Synthesis and
characterization of poly-pyrrole/TiO2 composites on mild steel,
J. Appl. Electrochem., 31 (2001) 49–56.
- L. Sun, Y. Shi, B. Li, X. Li, Y. Wang, Preparation and
characterization of polypyrrole/TiO2 nanocomposites by
reverse microemulsion polymerization and its photocatalytic
activity for the degradation of methyl orange under natural
light, Polym. Compos., 34 (2013) 1076–1080.
- Z. Guo, K. Shin, A.B. Karki, D.P. Young, R.B. Kaner, H.T. Hahn,
Fabrication and characterization of iron oxide nanoparticles
filled polypyrrole nanocomposites, J. Nanopart. Res., 11 (2009)
1441–1452.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun,
A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis
of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
- F. Denga, Y. Li, X. Luo, L. Yang, X. Tu, Preparation of conductive
polypyrrole/TiO2 nanocomposite via surface molecular
imprinting technique and its photocatalytic activity under
simulated solar light irradiation, Colloids Surf., A, 395 (2012)
183–189.
- M.C. Arenas, L.F. Nunez, D. Rangel, O.M. Alvarez, C.M. Alonso,
V.M. Castano, Simple one-step ultrasonic synthesis of anatase
titania/polypyrrole nanocomposites, Ultrason. Sonochem., 20
(2013) 777–784.
- M. Sedla, M. Mrlik, V. Pavlinek, P. Saha, O. Quadrat,
Electrorheological properties of suspensions of hollow globular
titanium oxide/polypyrrole particles, Colloid. Polym. Sci., 290
(2012) 41–48.
- K. Singh, R. Bharose, S.K. Verma, V.K. Singh, Potential of
powdered activated mustard cake for decolorising raw sugar,
J. Sci. Food Agric., 93 (2013) 157–165.
- H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C.
Guillard, J.M. Herrmann, Photocatalytic degradation of various
types of dyes (Alizarin S, Crocein Orange G, Methyl Red,
Congo Red, Methylene Blue) in water by UV-irradiated titania,
Appl. Catal., B, 39 (2002) 75–90.
- G.A. Epling, C. Lin, Photoassisted bleaching of dyes utilizing
TiO2 and visible light, Chemosphere, 46 (2002) 561–570.
- B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd ed.,
Prentice-Hall, Inc., New Jersey, 2001.
- M. Hema, A.Y. Arasi, P. Tamilselvi, R. Anbarasan, Titania
nanoparticles synthesized by sol–gel technique, Chem. Sci.
Trans., 2 (2013) 239–245.
- M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff,
K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles
for photochemical oxidation of concentrated chlorophenols
under direct solar radiation, Int. J. Electrochem. Sci., 7 (2012)
4871–4888.
- L. Cavigli, F. Bogani, A. Vinattieri, V. Faso, G. Baldi, Volume
versus surface-mediated recombination in anatase TiO2
nanoparticles, J. Appl. Phys., 106 (2009) 053516.
- S. Yang, X. Yang, X. Shao, R. Niu, L. Wang, Activated carbon
catalyzed persulfate oxidation of Azo dye acid orange 7 at
ambient temperature, J. Hazard. Mater., 186 (2011) 659–666.
- K.M. Reddy, S.V. Manorama, A.R. Reddy, Bandgap studies on
anatase titanium dioxide nanoparticles, Mater. Chem. Phys., 78
(2002) 239–245.
- S. Bashir, J. Liu, H. Zhang, X. Sun, J. Guo, Band gap evaluations
of metal-inserted titania nanomaterials, J. Nanopart. Res., 15
(2013) 1572.
- J. Guo, Interface science in nanoparticles: an electronic structure
view of photon-in/photon-out soft-X-ray spectroscopy, Int. J.
Quantum Chem., 109 (2009) 2714–2721.
- A. Achilleos, E. Hapeshi, N.P. Xekoukoulotakis, D. Mantzavinos,
D.F. Kassinos, Factors affecting diclofenac decomposition in water
by UV-A/TiO2 photo-catalysis, Chem. Eng. J., 161 (2010) 53–59.
- K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the
photocatalytic degradation of dyes using TiO2: a review, Appl.
Water Sci., 7 (2017) 1569–1578.
- E. Vulliet, J.M. Chovelon, C. Guillard, J.M. Herrmann, Factors
influencing the photo-catalytic degradation of sulfonylurea
herbicides by TiO2 aqueous suspension, J. Photochem.
Photobiol., A, 159 (2003) 71–79.
- K. Bubacz, J. Choina, D. Dolat, A.W. Morawski, Methylene blue
and phenol photo-catalytic degradation on nanoparticles of
anatase TiO2, Pol. J. Environ. Stud., 19 (2010) 685–691.
- C.M. Ling, A.R. Mohamed, S. Bhatia, Performance of
photocatalytic reactors using immobilized TiO2 film for the
degradation of phenol and methylene blue dye present in water
stream, Chemosphere, 57 (2004) 547–554.
- C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M.
Herrmann, Influence of chemical structure of dyes, of pH and
of inorganic salts on their photocatalytic degradation by TiO2
comparison of the efficiency of powder and supported TiO2, J.
Photochem. Photobiol., A, 158 (2003) 27–36.
- B. Zielinska, J. Grzechulska, R.J. Kalenczuk, A.W. Morawski,
The pH influence on photocatalytic decomposition of organic
dyes over A11 and P25 titanium dioxide, Appl. Catal., B, 45
(2003) 293–300.
- S. Senthilkumaar, K. Porkodi, R. Gomathi, A.G. Maheswari,
N. Manonmani, Sol–gel derived silver doped nanocrystalline
titania catalysed photodegradation of methylene blue from
aqueous solution, Dyes Pigm., 69 (2006) 22–30.
- S.K. Kansal, N. Kaur, S. Singh, Photocatalytic degradation
of two commercial reactive dyes in aqueous phase using
nanophotocatalysts, Nanoscale Res. Lett., 4 (2009) 709–716.
- K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic
degradation of commercial azo dyes, Water Res., 34 (2000)
327–333.
- J. Grzechulska, A.W. Morawski, Photocatalytic decomposition
of azo-dye acid black 1 in water over modified titanium dioxide,
Appl. Catal., B, 36 (2002) 45–51.
- E. Vulliet, J.M. Chovelon, C. Guillard, J.M. Herrmann, Factors
influencing the photocatalytic degradation of sulfonylurea
herbicides by TiO2 aqueous suspension, J. Photochem.
Photobiol., A, 159 (2003) 71–79.
- L. Zhang, W. Zhang, R. Li, H. Zhong, Y. Zhao, Y. Zhang, X. Wang,
Photo degradation of methyl orange by attapulgite–SnO2–TiO2
nanocomposites, J. Hazard. Mater., 171 (2009) 294–300.
- D. Chen, A.K. Ray, Photocatalytic kinetics of phenol and its
derivatives over UV irradiated TiO2, Appl. Catal., B, 23 (1999)
143–157.
- S. Ameen, H.K. Seo, M.S. Akhtar, H.S. Shin, Novel graphene/polyaniline nano-composites and its photocatalytic activity
toward the degradation of Rose Bengal dye, Chem. Eng. J., 210
(2012) 220–228.
- T. Sinha, M. Ahmaruzzaman, Photocatalytic decomposition
behavior and reaction pathways of organic compounds using
Cu nanoparticles synthesized via a green route, Photochem.
Photobiol. Sci., 15 (2016) 1272–1281.
- L. Zang, C.Y. Liu, X.M. Ren, Photochemistry of semiconductor
particles. Part 4. Effects of surface condition on the
photodegradation of 2,4-dichlorophenol catalysed by TiO2
suspensions, J. Chem. Soc., Faraday Trans., 91 (1995) 917–923.
- F.D. Mai, C.S. Lu, C.W. Wu, C.H. Huang, J.Y. Chen, C.C. Chen,
Mechanisms of photocatalytic degradation of Victoria Blue R
using nano-TiO2, Sep. Purif. Technol., 62 (2008) 423–436.
- B.D. Credico, I.R. Bellobono, M. D’Arienzo, D. Fumagalli, M.
Redaelli, R. Scotti, F. Morazzon, Efficacy of the reactive oxygen
species generated by immobilized TiO2 in the photocatalytic
degradation of diclofenac, Int. J. Photoenergy, 2015 (2015) 1–13.
- J. Eriksson, J. Svanfelt, L. Kronberg, A photochemical study of
diclofenac and its major transformation products, Photochem.
Photobiol., 86 (2010) 528–532.
- J. Zhang, Y. Nosaka, Mechanism of the OH radical generation in
photocatalysis with TiO2 of different crystalline types, J. Phys.
Chem. C, 118 (2014) 10824–10832.
- R.W. Matthews, Kinetics of photocatalytic oxidation of organic
solutes over titanium dioxide, J. Catal., 111 (1988) 264–272.
- R. Zepp, D. Crosby, A, Lewis Publs., CRC Press, Boca Raton,
Florida, Chapter 22 (1994) 317–348.
- S. Yang, X. Yang, X. Shao, R. Niu, L. Wang, Activated carbon
catalyzed persulfate oxidation of azo dye acid orange 7 at
ambient temperature, J. Hazard. Mater., 186 (2011) 659–666.
- N. Guettaı, H.A. Amar, Photocatalytic oxidation of methyl
orange in presence of titanium dioxide in aqueous suspension.
Part II: Kinetics study, Desalination, 185 (2005) 439–448.
- E. Kordouli, K. Bourikas, A. Lycourghiotis, C. Kordulis, The
mechanism of azo-dyes adsorption on the titanium dioxide
surface and their photocatalytic degradation over samples with
various anatase/rutile ratios, Catal. Today, 252 (2015) 128–135.
- I.K. Konstantinou, T.A. Albanis TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetics and
mechanistic investigations. A review, Appl. Catal., B, 49 (2004)
1–14.
- A.F. Júnior, E.C. de Oliveira Lima, A.N. Miguel, P.R. Wells,
Synthesis of nanoparticles of CoxFe(3−x)O4 by combustion
reaction method, J. Magn. Magn. Mater., 308 (2007) 198–202.
- M.A. Abu-Hassan, J.K. Kim, I.S. Metcalfe, D. Mantzavinos,
Kinetics of low frequency sonodegradation of linear
alkylbenzene sulfonate solutions, Chemosphere, 62 (2006)
749–755.
- N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Kinetics
of heterogeneous photocatalytic degradation of reactive dyes in
an immobilized TiO2 photocatalytic reactor, J. Colloid Interface
Sci., 295 (2006) 159–164.
- G.M. Liu, X.Z. Li, J.C. Zhao, S. Horikoshi, H. Hidaka,
Photooxidation mechanism of dye alizarin red in TiO2
dispersions under visible illumination: an experimental and
theoretical examination, J. Mol. Catal. A: Chem., 153 (2000)
221–229.
- C. Galindo, P. Jacques, A. Kalt, Photodegradation of the
aminoazobenzene acid orange 52 by three advanced oxidation
processes: UV/H2O2, UV/TiO2 and VIS/TiO2: comparative
mechanistic and kinetic investigations, J. Photochem. Photobiol.
A, 130 (2000) 35–47.