References
- M. Couderc, L. Poirier, A. Zalouk-Vergnoux, A. Kamari, I.
Blanchet-Letrouvé, P. Marchand, A. Vénisseau, B. Veyrand,
C. Mouneyrac, B. Le Bizec, Occurrence of POPs and other
persistent organic contaminants in the European eel (Anguilla
anguilla) from the Loire estuary, France, Sci. Total Environ., 505
(2015) 199–215.
- D. Barceló, Emerging pollutants in water analysis, TrAC, Trends
Anal. Chem., 22 (2003) 14–16.
- X.R. Xu, X.Y. Li, Sorption and desorption of antibiotic
tetracycline on marine sediments, Chemosphere, 78 (2010)
430–436.
- O. Herrero, J.M. Pérez Martín, P. Fernández Freire, L. Carvajal
López, A. Peropadre, M.J. Hazen, Toxicological evaluation of
three contaminants of emerging concern by use of the Allium
cepa test, Mutat. Res., 743 (2012) 20–24.
- S. Kitamura, T. Suzuki, S. Sanoh, R. Kohta, N. Jinno, K. Sugihara,
S. Yoshihara, N. Fujimoto, H. Watanabe, S. Ohta, Comparative
study of the endocrine-disrupting activity of bisphenol A and
19 related compounds, Toxicol. Sci., 84 (2005) 249–259.
- J. Rivera-Utrilla, G. Prados-Joya, M. Sánchez-Polo, M.A.
Ferro-García, I. Bautista-Toledo, Removal of nitroimidazole
antibiotics from aqueous solution by adsorption/bioadsorption
on activated carbon, J. Hazard. Mater., 170 (2009) 298–305.
- X. Xie, Q. Zhou, Z. He, Y. Bao, Physiological and potential
genetic toxicity of chlortetracycline as an emerging pollutant in
wheat (Triticum aestivum L.), Environ. Toxicol. Chem., 29 (2010)
922–928.
- A.J. Watkinson, E.J. Murby, D.W. Kolpin, S.D. Costanzo,
The occurrence of antibiotics in an urban watershed: from
wastewater to drinking water, Sci. Total Environ., 407 (2009)
2711–2723.
- B. Li, T. Zhang, Mass flows and removal of antibiotics in two
municipal wastewater treatment plants, Chemosphere, 83
(2011) 1284–1289.
- H. Sun, X. Shi, J. Mao, D. Zhu, Tetracycline sorption to coal
and soil humic acids: an examination of humic structural
heterogeneity, Environ. Toxicol. Chem., 29 (2010) 1934–1942.
- K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Removal of
antibiotics from a model wastewater by RO/NF membranes,
Sep. Purif. Technol., 53 (2007) 244–249.
- V. Homem, L. Santos, Degradation and removal methods
of antibiotics from aqueous matrices: a review, J. Environ.
Manage., 92 (2011) 2304–2347.
- R. Daghrir, P. Drogui, M.A. El Khakani, Photoelectrocatalytic
oxidation of chlortetracycline using Ti/TiO2 photo-anode with
simultaneous H2O2 production, Electrochim. Acta., 87 (2013) 18–31.
- E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji,
Performance of activated carbon and bentonite for adsorption
of amoxicillin from wastewater: mechanisms, isotherms and
kinetics, Water Res., 43 (2009) 2419–2430.
- G. Kyriakopoulos, D. Doulia, Adsorption of pesticides on
carbonaceous and polymeric materials from aqueous solutions:
a review, Sep. Purif. Rev., 35 (2006) 97–191.
- J. Torres-Perez, C. Gerente, Y. Andres, Conversion of agricultural
residues into activated carbons for water purification:
application to arsenate removal, J. Environ. Sci. Health., Part A,
47 (2012) 1173–1185.
- J. Torres-Pérez, L.A. Soria-Serna, M. Solache-Ríos, G. McKay,
One step carbonization/activation process for carbonaceous
material preparation from pecan shells for tartrazine removal
and regeneration after saturation, Adsorpt. Sci. Technol., 33
(2015) 895–913.
- J.P. Chen, S. Wu, K.H. Chong, Surface modification of a granular
activated carbon by citric acid for enhancement of copper
adsorption, Carbon, 41 (2003) 1979–1986.
- American Society for Testing and Materials, Annual Book of the
ASTM Standards, 1994.
- P. Faria, J. Orfao, M. Pereira, Adsorption of anionic and cationic
dyes on activated carbons with different surface chemistries,
Water Res., 38 (2004) 2043–2052.
- Z.M. Wang, H. Kanoh, K. Kaneko, G.Q. Lu, D. Do, Structural
and surface property changes of macadamia nut-shell char
upon activation and high temperature treatment, Carbon, 40
(2002) 1231–1239.
- A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A.S.
Yamazaki, G.F.G. Bandoch, T. Asefa, J.V. Visentainer, V.C.
Almeida, Removal of tetracycline by NaOH-activated carbon
produced from macadamia nut shells: kinetic and equilibrium
studies, Chem. Eng. J., 260 (2015) 291–299.
- J. Rivera-Utrilla, I. Bautista-Toledo, M.A. Ferro-Garcia, C.
Moreno-Castilla, Activated carbon surface modifications
by adsorption of bacteria and their effect on aqueous lead
adsorption, J. Chem. Technol. Biotechnol., 76 (2001) 1209–1215.
- K.Y. Foo, B.H. Hameed, Microwave-assisted preparation of oil
palm fiber activated carbon for methylene blue adsorption,
Chem. Eng. J., 166 (2011) 792–795.
- V.O. Njoku, K.Y. Foo, B.H. Hameed, Microwaveassisted
preparation of pumpkin seed hull activated
carbon and its application for the adsorptive removal of
2,4-dichlorophenoxyacetic acid, Chem. Eng. J., 215–216 (2013)
383–388.
- R.H. Hesas, A. Arami-Niya, W.M. Wan Daud, J.N. Sahu,
Preparation of granular activated carbon from oil palm shell
by microwave-induced chemical activation: optimisation using
surface response methodology, Chem. Eng. Res. Des., 91 (2013)
2447–2456.
- J.M. Salman, V.O. Njoku, B.H. Hameed, Bentazon and
carbofuran adsorption onto date seed activated carbon: kinetics
and equilibrium, Chem. Eng. J., 173 (2011) 361–368.
- M. Olivares-Marín, C. Fernández-González, A. Macías-García,
V. Gómez-Serrano, Preparation of activated carbon from cherry
stones by physical activation in air. Influence of the chemical
carbonisation with H2SO4, J. Anal. Appl. Pyrolysis, 94 (2012)
131–137.
- A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita,
M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C.
Almeida, NaOH-activated carbon of high surface area produced
from coconut shell: kinetics and equilibrium studies from the
methylene blue adsorption, Chem. Eng. J., 174 (2011) 117–125.
- S. Lagergren, To the theory of dissolved substances adsorption,
K. Sven. Vetenskapsakademiens Handl., 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Application of kinetic models to the sorption
of copper(II) on to peat, Adsorpt. Sci. Technol., 20 (2002)
797–815.
- M.R. Samarghandi, M. Hadi, G. Mckay, Breakthrough curve
analysis for fixed-bed adsorption of azo dyes using novel pine
cone-derived active carbon, Adsorpt. Sci. Technol., 32 (2014)
791–806.
- R. Cortés-Martínez, V. Martínez-Miranda, M. Solache-Ríos, I.
García-Sosa, Evaluation of natural and surfactant-modified
zeolites in the removal of cadmium from aqueous solutions,
Sep. Sci. Technol., 39 (2004) 2711–2730.
- B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption isotherm,
kinetic modeling and mechanism of 2,4,6-trichlorophenol on
coconut husk-based activated carbon, Chem. Eng. J., 144 (2008)
235–244.
- S. Sen Gupta, K.G. Bhattacharyya, Kinetics of adsorption of
metal ions on inorganic materials: a review, Adv. Colloid
Interface Sci., 162 (2011) 39–58.
- M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris,
Cationic and anionic dye adsorption by agricultural solid
wastes: a comprehensive review, Desalination, 280 (2011) 1–13.
- V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study
and equilibrium isotherm analysis of Congo Red adsorption by
clay materials, Chem. Eng. J., 148 (2009) 354–364.
- M. Akhtar, S.M. Hasany, M.I. Bhanger, S. Iqbal, Low cost
sorbents for the removal of methyl parathion pesticide from
aqueous solutions, Chemosphere, 66 (2007) 1829–1838.
- U.R. Malik, S.M. Hasany, M.S. Subhani, Sorptive potential of
sunflower stem for Cr(III) ions from aqueous solutions and its
kinetic and thermodynamic profile, Talanta, 66 (2005) 166–173.
- B. Sellergren, Imprinted chiral stationary phases in highperformance
liquid chromatography, J. Chromatogr., A, 906
(2001) 227–252.
- Y.L. Ma, Z.R. Xu, T. Guo, P. You, Adsorption of methylene blue
on Cu(II)-exchanged montmorillonite, J. Colloid Interface Sci.,
280 (2004) 283–288.
- H. Faghihian, M.K. Amini, A.R. Nezamzadeh, Cerium uptake
by zeolite a synthesized from natural clinoptilolite tuffs, J.
Radioanal. Nucl. Chem., 264 (2005) 577–582.
- M. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen,
Thermodynamic behaviour and the effect of temperature on
the removal of dyes from aqueous solution using modified
diatomite: a kinetic study, J. Colloid Interface Sci., 287 (2005)
6–13.
- H.R. Pouretedal, N. Sadegh, Effective removal of Amoxicillin,
Cephalexin, Tetracycline and Penicillin G from aqueous
solutions using activated carbon nanoparticles prepared from
vine wood, J. Water Process Eng., 1 (2014) 64–73.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916)
2221–2295.
- R. Acosta, V. Fierro, A. Martinez de Yuso, D. Nabarlatz, A.
Celzard, Tetracycline adsorption onto activated carbons
produced by KOH activation of tyre pyrolysis char,
Chemosphere, 149 (2016) 168–176.
- H. Sayğılı, F. Güzel, Effective removal of tetracycline from
aqueous solution using activated carbon prepared from tomato
(Lycopersicon esculentum Mill.) industrial processing waste,
Ecotoxicol. Environ. Saf., 131 (2016) 22–29.
- J. Torres-Pérez, C. Gérente, Y. Andrès, Sustainable activated
carbons from agricultural residues dedicated to antibiotic
removal by adsorption, Chin. J. Chem. Eng., 20 (2012) 524–529.
- P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu,
Modification of bio-char derived from fast pyrolysis of biomass
and its application in removal of tetracycline from aqueous
solution, Bioresour. Technol., 121 (2012) 235–240.
- Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su,
Adsorption and removal of tetracycline antibiotics from
aqueous solution by graphene oxide, J. Colloid Interface Sci.,
368 (2012) 540–546.
- D. Zhang, J. Yin, J. Zhao, H. Zhu, C. Wang, Adsorption and
removal of tetracycline from water by petroleum coke-derived
highly porous activated carbon, J. Environ. Chem. Eng., 3 (2015)
1504–1512.
- X. Zhu, Y. Liu, F. Qian, C. Zhou, S. Zhang, J. Chen, Preparation
of magnetic porous carbon from waste hydrochar by
simultaneous activation and magnetization for tetracycline
removal, Bioresour. Technol., 154 (2014) 209–214.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–471.
- M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalysts, Acta Physiocochim. U.R.S.S., 12 (1940)
217–222.
- Z. Li, L. Schulz, C. Ackley, N. Fenske, Adsorption of tetracycline
on kaolinite with pH-dependent surface charges, J. Colloid
Interface Sci., 351 (2010) 254–260.
- A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva, V.C.
Almeida, Adsorption of methylene blue on activated carbon
produced from flamboyant pods (Delonix regia): study of
adsorption isotherms and kinetic models, Chem. Eng. J., 168
(2011) 722–730.
- T.L. Ter Laak, P. Mayer, F.J.M. Busser, H.J.C. Klamer, J.L.M.
Hermens, Sediment dilution method to determine sorption
coefficients of hydrophobic organic chemicals, Environ. Sci.
Technol., 39 (2005) 4220–4225.