References
- M.S. Latha, J. Martis, V. Shobhav, R.S. Shinde, S. Bangera, B.
Krishnankutty, S. Bellary, S. Varughese, P. Rao, B.R.N. Kumar,
Sunscreening agents: a review, J. Clin. Aesthet. Dermatol., 6
(2013) 16–26.
- A.J.M. Santos, M.S. Miranda, J.C.G.E. da Silva, The degradation
products of UV filters in aqueous and chlorinated aqueous
solutions, Water Res., 46 (2012) 3167–3176.
- S. Kim, K. Choi, Occurrences, toxicities, and ecological risks of
benzophenone-3, a common component of organic sunscreen
products: a mini-review, Environ Int., 70 (2014) 143–157.
- M.E. Balmer, H.R. Buser, M.D. Müller, T. Poiger, Occurrence
of some organic UV filters in wastewater, in surface waters,
and in fish from Swiss lakes, Environ. Sci. Technol., 39 (2005)
953–962.
- C.A. Downs, E. Kramarsky-Winter, R. Segal, J. Fauth, S.
Knutson, O. Bronstein, F.R. Ciner, J. Rina, Y. Lichtenfeld, C.M.
Woodley, P. Pennington, K. Cadenas, A. Kushmaro, Y. Loya,
Toxicopathological effects of the sunscreen UV filter, oxybenzone
(benzophenone-3), on coral planulae and cultured primary cells
and its environmental contamination in Hawaii and the U.S.
Virgin Islands, Arch. Environ. Contam. Toxicol., 70 (2015) 265–288.
- G. Kerdivel, R.L. Guevel, D. Habauzit, F. Brion, S. Ait-Aissa,
F. Pakdel, Estrogenic potency of benzophenone UV filters in
breast cancer cells: proliferative and transcriptional activity
substantiated by docking analysis, PLoS One, 8 (2013) e60567.
- M. Coronado, H. De Haro, X. Deng, M.A. Rempel, R. Lavado,
D. Schlenk, Estrogenic activity and reproductive effects of
the UV-filter oxybenzone (2-hydroxy-4-methoxyphenylmethanone)
in fish, Aquat. Toxicol., 90 (2008) 182–187.
- M. Schlumpf, S. Durrer, O. Faass, C. Ehnes, M. Fuetsch, C.
Gaille, M. Henseler, L. Hofkamp, K. Maerkel, S. Reolon, B.
Timms, J.A.F. Tresguerres, W. Lichtensteiger, Developmental
toxicity of UV filters and environmental exposure: a review, Int.
J. Androl., 31 (2008) 144–151.
- K.M. Hanson, E. Gratton, C.J. Bardeen, Sunscreen enhancement
of UV-induced reactive oxygen species in the skin, Free Radical
Biol. Med., 41 (2006) 1205–1212.
- D. Nakajima, S. Asada, S. Kageyama, T. Yamamoto, H.
Kuramochi, N. Tanaka, K. Takeda, S. Goto, Activity related to
the carcinogenicity of plastic additives in the benzophenone
group, J. UOEH, 28 (2006) 143–156.
- H. Zhao, D. Wei, M. Li, Y. Du, Substituent contribution to the
genotoxicity of benzophenone-type UV filters, Ecotoxicol.
Environ. Saf., 95 (2013) 241–246.
- M.C. Cuquerella, V. Lhiaubet-Vallet, J. Cadet, M.A. Miranda,
Benzophenone photosensitized DNA damage, Acc. Chem. Res.,
45 (2012) 1558–1570.
- S.J. In, S.-H. Kim, R.E. Go, K.A. Hwang, K.-C. Choi,
Benzophenone-1 and nonylphenol stimulated MCF-7 breast
cancer growth by regulating cell cycle and metastasis-related
genes via an estrogen receptor α-dependent pathway, J. Toxicol.
Environ. Health, 78 (2015) 492–505.
- S.-H. Kim, K. Hwang, S.-M. Shim, K.-C. Choi, Growth and
migration of LNCaP prostate cancer cells are promoted by
triclosan and benzophenone-1 via an androgen receptor
signaling pathway, Environ. Toxicol. Pharmacol., 39 (2015)
568–576.
- P.P. Phiboonchaiyanan, K. Busaranon, C. Ninsontia, P.
Chanvorachote, Benzophenone-3 increases metastasis potential
in lung cancer cells via epithelial to mesenchymal transition,
Cell Biol. Toxicol., 33 (2017) 251–261.
- S. Zhang, X. Wang, H. Yang, Y.F. Xie, Chlorination of
oxybenzone: kinetics, transformation, disinfection byproducts
formation, and genotoxicity changes, Chemosphere, 154 (2016)
521–527.
- A. Gackowska, M. Przybyłek, W. Studziński, J. Gaca, Formation
of chlorinated breakdown products during degradation of
sunscreen agent 2-ethylhexyl-4-methoxycinnamate in the
presence of sodium hypochlorite, Environ. Sci. Pollut. Res., 23
(2016) 1886–1897.
- J. Li, L.-Y. Ma, L. Xu, Transformation of benzophenone-type UV
filters by chlorine: kinetics, products identification and toxicity
assessments, J. Hazard. Mater., 311 (2016) 263–272.
- S.E. Duirk, D.R. Bridenstine, D.C. Leslie, Reaction of
benzophenone UV filters in the presence of aqueous chlorine:
kinetics and chloroform formation, Water Res., 47 (2013)
579–587.
- N. Negreira, P. Canosa, I. Rodrıguez, M. Ramil, E. Rubı,
R. Cela, Study of some UV filters stability in chlorinated
water and identification of halogenated by-products by gas
chromatography–mass spectrometry, J. Chromatogr., A, 1178
(2008) 206–214.
- O. Acevedo, Simulating chemical reactions in ionic liquids
using QM/MM methodology, J. Phys. Chem. A, 118 (2014)
11653−11666.
- G. Groenhof, Introduction to QM/MM Simulations, L.
Monticelli, E. Salonen (eds.), Biomolecular Simulations:
Methods and Protocols, Methods in Molecular Biology, Chap. 3,
Vol. 924, Springer Science+Business Media, New York, 2013, pp.
43–65.
- M.W. van der Kamp, A.J. Mulholland, Combined quantum
mechanics/molecular mechanics (QM/MM) methods
in computational enzymology, Biochemistry, 16 (2013)
2708–2728.
- H.M. Senn, W. Thiel, QM/MM methods for biomolecular
systems, Angew. Chem. Int. Ed. Engl., 48 (2009) 1198–1229.
- A.S. Gonçalves, T.C.C. França, J.D. Figueroa-Villar, P.G.
Pascutti, Molecular dynamics simulations and QM/MM
studies of the reactivation by 2-PAM of Tabun-inhibited human
acethylcolinesterase, J. Braz. Chem. Soc., 22 (2011) 155–165.
- K.W. Sattelmeyer, J. Tirado-Rives, W.L. Jorgensen, Comparison
of SCC-DFTB and NDDO-based semiempirical molecular
orbital methods for organic molecules, J. Phys. Chem. A, 50
(2006) 13551–13559.
- M.P. Repasky, J. Chandrasekar, W. Jorgensen, PDDG/PM3 and
PDDG/MNDO: improved semiempirical methods, J. Comput.
Chem., 23 (2002) 1601–1622.
- S. Antonczak, M. Ruiz-López, J.-L. Rivail, The hydrolysis
mechanism of formamide revisited: comparison between ab
initio, semiempirical and DFT results, J. Mol. Model., 3 (1997)
434–442.
- J.J. Dannenberg, Hydrogen bonds: a comparison of
semiempirical and ab initio treatments, J. Mol. Struct.
THEOCHEM, 401 (1996) 279–286.
- H.F. Ridgway, B. Mohan, X. Cui, K.J. Chua, M.R. Islam,
Molecular dynamics simulation of gas-phase ozone reactions
with sabinene and benzene, J. Mol. Graphics Modell., 74 (2017)
241–250.
- G.B. Rocha, R.O. Freire, A.M. Simas, J.P. Stewart, RM1: a
reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I, J.
Comput. Chem., 27 (2006) 1101–1111.
- W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey,
M.L. Klein, Comparison of simple potential functions for
simulating liquid water, J. Chem. Phys., 79 (1983) 926–935.
- P. Pulay, Convergence acceleration of iterative sequences: the
case of SCF iteration, Chem. Phys. Lett., 73 (1980) 393–398.
- P. Pulay, Improved SCF convergence acceleration, J. Comput.
Chem., 3 (1982) 556–560.
- A.S. Christensen, T. Kubar, Q. Cui, M. Elstner, Semiempirical
quantum mechanical methods for noncovalent interactions for
chemical and biochemical applications, Chem. Rev., 116 (2016)
5301−5337.
- M.S. Elioff, J. Hoy, J.A. Bumpus, Calculating heat of formation
values of energetic compounds: a comparative study, Adv.
Phys. Chem., 2016 (2016) 1–11.
- R. Casadesús, M. Moreno, A. González-Lafont, J.M. Lluch, M.P.
Repasky, Testing electronic structure methods for describing
intermolecular H...H interactions in supramolecular chemistry,
J. Comput. Chem., 25 (2004) 99–105.
- I. Tubert-Brohman, C.R. Guimarães, M.P. Repasky, W.L.
Jorgensen, Extension of the PDDG/PM3 and PDDG/MNDO
semiempirical molecular orbital methods to the halogens, J.
Comput. Chem., 25 (2004) 138–150.
- I.V. Alabugin, T.A. Zeidan, Stereoelectronic effects and general
trends in hyperconjugative acceptor ability of σ-bonds, J. Am.
Chem. Soc., 124 (2002) 3175–3185.
- I.V. Alabugin, K.M. Gilmore, P.W. Peterson, Hyperconjugation,
WIREs Comput. Mol. Sci., 1 (2011) 109–141.
- K. Bozorov, J.-U. Zhao, H.A. Aisa, Recent advances in ipsonitration
reactions, Archive Organ. Chem., Part I (2017) 41–66.
- T. Ohe, T. Mashino, M. Hirobe, Substituent elimination from
p-substituted phenols by cytochrome P450: ipso-substitution
by the oxygen atom of the active species, Drug Metab. Dispos.,
25 (1996) 116–122.
- B. Kolvenbach, N. Schlaich, Z. Raoui, J. Prell, S. Zuhlke,
A. Schaffer, F.P. Guengerich, P.F.X. Corvini, Degradation
pathway of bisphenol A: does ipso substitution apply to
phenols containing a quaternary alpha-carbon structure in the
para position?, Appl. Environ. Microbiol., 73 (2007) 4776–4784.
- F.L. Gabriel, M. Cyris, G.W. Kohler, Ipso-substitution: a general
biochemical and biodegradation mechanism to cleave alphaquaternary
alkylphenols and bisphenol A, Chem. Biodivers., 9
(2007) 2123–2137.
- A. Fischer, G. Henderson, Bromination of phenols, isomerization
and disproportionation of bromophenols, and dienone-phenol
rearrangement of bromodienones, Can. J. Chem., 61 (1983)
1045–1053.
- Y. Ogata, M. Kimura, Y. Kondo, H. Katoh, F.-C. Chen,
Orientation in the chlorination of phenol and of anisole with
sodium and t-butyl hypochlorites in various solvents, J. Chem.
Soc., Perkin Trans. 1, 2 (1984) 451–453.
- J.J. Mullins, Hyperconjugation: a more coherent approach, J.
Chem. Educ., 89 (2012) 834–836.
- R.K. Bansal, N. Gupta, S. Bansal, Semiempirical PM3
calculations of pyridinium dichlorophosphinomethylides:
presence of negative hyperconjugation, Indian J. Chem., Sect B,
43B (2004) 144–148.
- B. Galabova, G. Kolevaa, S. Simova, B. Hadjieva, H.F. Schaefer,
P.V.R. Schleyer, Arenium ions are not obligatory intermediates
in electrophilic aromatic substitution, Proc. Natl. Acad. Sci.
U.S.A., 111 (2014) 10067–10072.
- T. Manasfi, V. Storck, S. Ravier, C. Demelas, B. Coulomb,
J.-L. Boudenne, Degradation products of benzophenone‑3 in
chlorinated seawater swimming pools, Environ. Sci. Technol.,
49 (2015) 9308−9316.
- J.F. Bunnet, Physical organic terminology, after ingold, Bull.
Hist. Chem., 19 (1996) 33−42.
- J.J.P. Stewart, Optimization of parameters for semiempirical
methods V: modification of NDDO approximations and
application to 70 elements, J. Mol. Model., 13 (2007) 1173–1213.
- J. Dolenc, J. Koller, An improved semiempirical MO PM3
method for hydrogen-bonded systems, Acta Chim. Slov., 53
(2006) 229–237.
- E.O. Igbinosa, E.E. Odjadjare, V.N. Chigor, I.H. Igbinosa,
A.O. Emoghene, F.O. Ekhaise, N.O. Igiehon, O.G. Idemudia,
Toxicological profile of chlorophenols and their derivatives in
the environment: the public health perspective, Sci. World J.,
2013 (2013) 1–11.
- J. Michałowicz, I. Majsterek, Chlorophenols, chlorocatechols
and chloroguaiacols induce DNA base oxidation in human
lymphocytes (in vitro), Toxicology, 268 (2010) 171–175.
- S. Rosokha, J.K. Kochi, The preorganization step in organic
reaction mechanisms: charge transfer complexes as precursors
to electrophilic aromatic substitutions, J. Org. Chem., 67 (2002)
1727–1737.