References
- V. Kitsiou, N. Filippidis, D. Mantzavinos, I. Poulios,
Heterogeneous and homogeneous photocatalytic degradation
of the insecticide imidacloprid in aqueous solutions, Appl.
Catal., B, 86 (2009) 27–35.
- Y. Wang, H. Zhao, M. Li, J. Fan, G. Zhao, Magnetic ordered
mesoporous copper ferrite as a heterogeneous Fenton catalyst
for the degradation of imidacloprid, Appl. Catal., B, 147 (2014)
534–545.
- H. Guan, D. Chi, J. Yu, H. Li, Dynamics of residues from a novel
nano-imidacloprid formulation in soyabean fields, Crop Prot.,
29 (2010) 942–946.
- R. Žabar, T. Komel, J. Fabjan, M.B. Kralj, P. Trebše, Photocatalytic
degradation with immobilised TiO2 of three selected
neonicotinoid insecticides: imidacloprid, thiamethoxam and
clothianidin, Chemosphere, 89 (2012) 293–301.
- P. Jovanov, V. Guzsvány, S. Lazić, M. Franko, M. Sakač, L. Šarić,
J. Kos, Development of HPLC-DAD method for determination
of neonicotinoids in honey, J. Food Compos. Anal., 40 (2015)
106–113.
- S. Malato, J. Caceres, A. Aguera, M. Mezcua, D. Hernando, J.
Vial, A.R. Fernandez-Alba, Degradation of imidacloprid in
water by photo-Fenton and TiO2 photocatalysis at a solar pilot
plant: a comparative study, Environ. Sci. Technol., 35 (2001)
4359–4366.
- M.A. Radwan, M.S. Mohamed, Imidacloprid induced
alterations in enzyme activities and energy reserves of the land
snail, Helix aspersa, Ecotoxicol. Environ. Saf., 95 (2013) 91–97.
- S. Baskaran, R.S. Kookana, R. Naidu, Determination of
the insecticide imidacloprid in water and soil using highperformance
liquid chromatography, J. Chromatogr., A, 787
(1997) 271–275.
- M. Rani, U. Shanker, V. Jassal, Recent strategies for removal and
degradation of persistent and toxic organochlorine pesticides
using nanoparticles: a review, J. Environ. Manage., 190 (2017)
208–222.
- W.J. Liu, T.T. Qian, H. Jiang, Bimetallic Fe nanoparticles:
recent advances in synthesis and application in catalytic
elimination of environmental pollutants, Chem. Eng. J., 236
(2014) 448–463.
- H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and
thermodynamics of cadmium ion removal by adsorption onto
nano zero valent iron particles, J. Hazard. Mater., 186 (2011)
458–465.
- M. Vitkov, M. Puschenreiter, M. Komarek, Effect of nano zerovalent
iron application on As, Cd, Pb, and Zn availability in the
rhizosphere of metal(loid) contaminated soils, Chemosphere,
200 (2018) 217–226.
- S. Li, W. Wang, F. Liang, W.X. Zhang, Heavy metal removal
using nanoscale zero-valent iron (nZVI): theory and application,
J. Hazard. Mater., 322 (2017) 163–171.
- Y.S. El-Temsah, A. Sevcu, K. Bobcikova, M. Cernik, E.J. Joner,
DDT degradation efficiency and ecotoxicological effects of two
types of nano-sized zero-valent iron (nZVI) in water and soil,
Chemosphere, 144 (2016) 2221–2228.
- Y.S. Keum, Q.X. Li, Reduction of nitroaromatic pesticides with
zero valent iron, Chemosphere, 54 (2004) 255–263.
- S. Roman, M.L. Alonso, L. Bartolome, A. Galdames, E. Goiti,
M. Ocejo, M. Moraques, R.M. Alonso, J.L. Vilas, Relevance study
of bare and coated zero valent iron nanoparticles for lindane
degradation from its by-product monitirization, Chemosphere,
93 (2013) 1324–1332.
- Z.X. Chen, X.Y. Jin, Z. Chen, M. Megharaj, R. Naidu, Removal
of methyl orange from aqueous solution using bentonitesupported
nanoscale zero-valent iron, J. Colloid Interface Sci.,
363 (2011) 601–607.
- J. Fan, Y. Guo, J. Wang, M. Fan, Rapid decolorization of azo dye
methyl orange in aqueous solution by nanoscale zerovalent iron
particles, J. Hazard. Mater., 166 (2009) 904–910.
- J. Lin, M. Sun, X. Liu, Z. Chen, Functional kaolin supported
nanoscale zero-valent iron as a Fenton-like catalyst for the
degradation of Direct Black G, Chemosphere, 184 (2017) 664–672.
- Y. Liu, S. Zha, D. Rajarathnam, Z. Chen, Divalent cations
impacting on Fenton-like oxidation of amoxicillin using nZVI
as a heterogeneous catalyst, Sep. Purif. Technol., 188 (2017)
548–552.
- W. Zhang, H. Gao, J. He, P. Yang, D. Wang, T. Ma, H. Xia, X. Xu,
Removal of norfloxacin using coupled synthesized nanoscale
zero-valent iron (nZVI) with H2O2 system: optimization of
operating conditions and degradation pathway, Sep. Purif.
Technol., 172 (2017) 158–167.
- Y. Li, F. Fu, Z. Ding, Removal of nitrate from water by acidwashed
zero-valent iron/ferrous ion/hydrogen peroxide:
influencing factors and reaction mechanism, Water Sci. Technol.,
77 (2018) 525–533.
- Q. Wu, C. Zheng, J. Zhang, F. Zhang, Nitrate removal by a
permeable reactive barrier of Fe0: a model based evaluation,
J. Earth Sci., 28 (2017) 447–456.
- H. Dong, Q. He, G. Zeng, L. Tang, L. Zhang, Y. Xie, Y. Zeng,
F. Zhao, Degradation of trichloroethene by nanoscale zerovalent
iron (nZVI) and nZVI activated persulfate in the absence
and presence of EDTA, Chem. Eng. J., 316 (2017) 410–418.
- I. Dror, O.M. Jacov, A. Cortis, B. Berkowitz, Catalytic
transformation of persistent contaminants using a new
composite material based on nanosized zero valent iron, ACS
Appl. Mater. Interfaces, 4 (2012) 3416–3423.
- N. Krasae, K. Wantala, Enhanced nitrogen selectivity for nitrate
reduction on Cu–nZVI by TiO2 photocatalysts under UV
irradiation, Appl. Surf. Sci., 380 (2016) 309–317.
- K. Pawlak, J. Fronczyk, K. Garbulewski, Reactivity of nano
zero valent iron in permeable reactive barriers, Pol. J. Chem.
Technol., 17 (2015) 1–7.
- M. Turabik, U.B. Simsek, Effect of synthesis parameters on the
particle size of the zero valent iron nanoparticles, Inorg. Nano
Metal Chem., 47 (2017) 1033–1043.
- S. Xavier, R. Gandhimathi, P.V. Nidheesh, S. Thanga Ramesh,
Comparative removal of Magenta MB from aqueous solution
by homogeneous and heterogeneous photo-Fenton processes,
Desal. Wat. Treat., 57 (2015) 12832–12841.
- H. Tamura, K. Goto, T. Yotsuyanagi, M. Nagayama,
Spectrophotometric determination of iron (II) with liophenanthroline
in the presence of large amounts of iron (III),
Talanta, 21 (1973) 314–318.
- P.V. Nidheesh, R. Gandhimathi, S. Velmathib, N.S. Sanjinib,
Magnetite as a heterogeneous electro Fenton catalyst for the
removal of Rhodamine B from aqueous solutions, RSC Adv., 4
(2014) 5698.
- A. Liu, J. Liu, B. Pan, W. Zhang, Formation of lepidocrocite
(g-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI)
in oxygenated water, RSC Adv., 4 (2014) 57377.
- C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles
for rapid and complete dechlorination of TCE and PCBs,
Environ. Sci. Technol., 31 (1997) 2154–2156.
- F. Fua, D.D. Dionysiou, H. Li, The use of zero valent iron for
groundwater remediation and wastewater treatment: a review,
J. Hazard. Mater., 267 (2014), 194–205.
- S.H. Joo, A.J. Feitz, D.L. Sedlak, T.D. Waite, Quantification of the
oxidizing capacity of nanoparticulate zero valent iron, Environ.
Sci. Technol., 39 (2005) 1263–1268.
- C.R. Marcelo, R.P. Lopes, J.C. Cruz, M.A. Nascimento,
A.A. Silva, C.F. Lima, Evaluation of different parameters on
the acetamiprid degradation by bimetallic Fe/Ni nanoparticles,
Sep. Purif. Technol., 171 (2016) 256–262.
- Y.H. Shih, C.P. Tso, L.Y. Tung, Rapid degradation of methyl
orange with nanoscale zerovalent iron particles, J. Environ.
Eng. Manage., 20 (2010) 137–143.
- M. Zhang, Q. Zhao, Z. Ye, Organic pollutants removal from
2,4,6-trinitrotoluene(TNT) red water using low cost activated
coke, J. Environ. Sci., 23 (2011) 1962–1969.
- D.W. Elliott, H.L. Lien, W.X. Zhang, Degradation of lindane by
zero valent iron nanoparticles, J. Environ. Eng., 135 (2009) 317–324..
- R. Rakhshaee, Rule of Fe0 nano-particles and biopolymer
structures in kinds of the connected pairs to remove Acid
Yellow 17 from aqueous solution: simultaneous removal of dye
in two paths and by four mechanisms, J. Hazard. Mater., 197
(2011) 144–152.
- B.A. Lenell, Y. Arai, Perrhenate sorption kinetics in zerovalent
iron in high pH and nitrate media, J. Hazard. Mater., 321 (2017)
335–343.
- A.J. Feitz, S.H. Joo, J. Guan, Q. Sun, D.L. Sedlak, T.D. Waite,
Oxidative transformation of contaminants using colloidal zero
valent iron, Colloids Surf., A, 265 (2005) 88–94.
- X. Jin, Z. Chen, Z. Chen, R. Zhou, Synthesis of kaolin supported
nanoscale zero-valent iron and its degradation mechanism of
Direct Fast Black G in aqueous solution, Mater. Res. Bull., 61
(2015) 433–438.
- Y. Lin, Z. Chen, Z. Chen, M. Megharaj, R. Naidu, Decoloration
of acid violet red B by bentonite-supported nanoscale zerovalent
iron: reactivity, characterization, kinetics and reaction
pathway, Appl. Clay Sci., 93–94 (2014) 56–61.
- J. Cao, L. Wei, Q. Huang, L. Wang, S. Han, Reducing
degradation of azo dye by zero valent iron in aqueous solution,
Chemosphere, 38 (1999) 565–571.
- P.N. Moza, K. Hustert, E. Feicht, A. Kettrup, Photolysis of
imidacloprid in aqueous solution, Chemosphere, 36 (1998)
497–502.
- M.L. Dell’arciprete, J.L. Santos, A.A. Sanz, R. Vicente, A.M.
Amat, J.P. Furlong, D.O. Martiere, M.C. Gonzalez, Reactivity of
hydroxyl radicals with neonicotinoid insecticides: mechanism
and changes in toxicity, Photochem. Photobiol. Sci., 8 (2009)
1016–1023.
- N. Schippers, W. Schwack, Photochemistry of imidacloprid in
model systems, J. Agric. Food Chem., 56 (2008) 8023–8029.
- F. Bourgin, L. Violleau, J. Debrauwer, Ozonation of
imidacloprid in aqueous solutions: reaction monitoring and
identification of degradation products, J. Hazard. Mater., 190
(2011) 60–68.
- C. Noubactep, An analysis of the evolution of reactive species
in Fe0/H2O systems, J. Hazard. Mater., 168 (2009) 1626–1631.
- S.H. Joo, D. Zhao, Destruction of lindane and atrazine using
stabilized iron nanoparticles under aerobic and anaerobic
conditions: effects of catalyst and stabilizer, Chemosphere, 70
(2008) 418–425.
- J. Lin, X. Weng, R. Dharmarajan, Z. Chen, Characterization and
reactivity of iron based nanoparticles synthesized by tea extracts
under various atmospheres, Chemosphere, 169 (2017) 413–417.
- A.W. McPherson, M.N. Goltz, A. Agrawal, Pollutant
Degradation by Nanoscale Zero Valent Iron (nZVI): Role of
Polyelectrolyte stabilization and Catalytic Modification on
nZVI Performance, American Chem. Soc. Dayton, Ohio, 2013,
pp. 160–191.
- A. Liu, J. Liu, J. Han, W. Zhang, Evolution of nanoscale zerovalent
iron (nZVI) in water: microscopic and spectroscopic
evidence on the formation of nano- and micro-structured iron
oxides, J. Hazard. Mater., 322 (2017) 129–135.
- Y. Furukawa, J.W. Kim, J. Watkins, R.T. Wilkin, Formation
of ferrihydrite and associated iron corrosion products in
permeable reactive barriers of zero-valent iron, Environ. Sci.
Technol., 36 (2002) 5469–5475.
- C. Noubactep, A critical review on the process of contaminant
removal in Fe0–H2O systems, Environ. Technol., 29 (2009)
909–920.
- T.B. Scott, I.C. Popescu, R.A. Crane, C. Noubactep, Nanoscale
metallic iron for the treatment of solutions containing
multiple inorganic contaminants, J. Hazard. Mater., 186 (2011)
280–287.
- Y. Wu, J. Zhang, Y. Tong, X. Xu, Chromium (VI) reduction
in aqueous solutions by Fe3O4 stabilized Fe0 nanoparticles, J.
Hazard. Mater., 172 (2009) 1640–1645.
- D. Redlich, N. Shahin, P. Ekici, A. Friess, H. Parlar, Kinetical
study of the photoinduced degradation of imidacloprid in
aquatic media, Clean Soil Air Water, 35 (2007) 452–458.
- X. Liu, Y. Tian, X. Zhou, Z. Liu, L. Huang, Zero-valent aluminum
as reducer in sodium carbonate solution for degradation of
imidacloprid, J. Chin. Chem. Soc., 63 (2016) 4754–4760.
- J. Tang, X. Huang, X. Huang, L. Xiang, Q. Wang, Photocatalytic
degradation of imidacloprid in aqueous suspension
of TiO2 supported on H-ZSM-5, Environ. Earth Sci., 66 (2012)
441–445.
- M. Turabik, N. Oturan, B. Gozmen, M.A. Oturan, Efficient
removal of insecticide imidacloprid from water by
electrochemical advanced oxidation processes, Environ. Sci.
Pollut. Res. Int., 21 (2014) 8387–8397.