References

  1. V. Kitsiou, N. Filippidis, D. Mantzavinos, I. Poulios, Heterogeneous and homogeneous photocatalytic degradation of the insecticide imidacloprid in aqueous solutions, Appl. Catal., B, 86 (2009) 27–35.
  2. Y. Wang, H. Zhao, M. Li, J. Fan, G. Zhao, Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid, Appl. Catal., B, 147 (2014) 534–545.
  3. H. Guan, D. Chi, J. Yu, H. Li, Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields, Crop Prot., 29 (2010) 942–946.
  4. R. Žabar, T. Komel, J. Fabjan, M.B. Kralj, P. Trebše, Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin, Chemosphere, 89 (2012) 293–301.
  5. P. Jovanov, V. Guzsvány, S. Lazić, M. Franko, M. Sakač, L. Šarić, J. Kos, Development of HPLC-DAD method for determination of neonicotinoids in honey, J. Food Compos. Anal., 40 (2015) 106–113.
  6. S. Malato, J. Caceres, A. Aguera, M. Mezcua, D. Hernando, J. Vial, A.R. Fernandez-Alba, Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: a comparative study, Environ. Sci. Technol., 35 (2001) 4359–4366.
  7. M.A. Radwan, M.S. Mohamed, Imidacloprid induced alterations in enzyme activities and energy reserves of the land snail, Helix aspersa, Ecotoxicol. Environ. Saf., 95 (2013) 91–97.
  8. S. Baskaran, R.S. Kookana, R. Naidu, Determination of the insecticide imidacloprid in water and soil using highperformance liquid chromatography, J. Chromatogr., A, 787 (1997) 271–275.
  9. M. Rani, U. Shanker, V. Jassal, Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: a review, J. Environ. Manage., 190 (2017) 208–222.
  10. W.J. Liu, T.T. Qian, H. Jiang, Bimetallic Fe nanoparticles: recent advances in synthesis and application in catalytic elimination of environmental pollutants, Chem. Eng. J., 236 (2014) 448–463.
  11. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zero valent iron particles, J. Hazard. Mater., 186 (2011) 458–465.
  12. M. Vitkov, M. Puschenreiter, M. Komarek, Effect of nano zerovalent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils, Chemosphere, 200 (2018) 217–226.
  13. S. Li, W. Wang, F. Liang, W.X. Zhang, Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application, J. Hazard. Mater., 322 (2017) 163–171.
  14. Y.S. El-Temsah, A. Sevcu, K. Bobcikova, M. Cernik, E.J. Joner, DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil, Chemosphere, 144 (2016) 2221–2228.
  15. Y.S. Keum, Q.X. Li, Reduction of nitroaromatic pesticides with zero valent iron, Chemosphere, 54 (2004) 255–263.
  16. S. Roman, M.L. Alonso, L. Bartolome, A. Galdames, E. Goiti, M. Ocejo, M. Moraques, R.M. Alonso, J.L. Vilas, Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitirization, Chemosphere, 93 (2013) 1324–1332.
  17. Z.X. Chen, X.Y. Jin, Z. Chen, M. Megharaj, R. Naidu, Removal of methyl orange from aqueous solution using bentonitesupported nanoscale zero-valent iron, J. Colloid Interface Sci., 363 (2011) 601–607.
  18. J. Fan, Y. Guo, J. Wang, M. Fan, Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles, J. Hazard. Mater., 166 (2009) 904–910.
  19. J. Lin, M. Sun, X. Liu, Z. Chen, Functional kaolin supported nanoscale zero-valent iron as a Fenton-like catalyst for the degradation of Direct Black G, Chemosphere, 184 (2017) 664–672.
  20. Y. Liu, S. Zha, D. Rajarathnam, Z. Chen, Divalent cations impacting on Fenton-like oxidation of amoxicillin using nZVI as a heterogeneous catalyst, Sep. Purif. Technol., 188 (2017) 548–552.
  21. W. Zhang, H. Gao, J. He, P. Yang, D. Wang, T. Ma, H. Xia, X. Xu, Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: optimization of operating conditions and degradation pathway, Sep. Purif. Technol., 172 (2017) 158–167.
  22. Y. Li, F. Fu, Z. Ding, Removal of nitrate from water by acidwashed zero-valent iron/ferrous ion/hydrogen peroxide: influencing factors and reaction mechanism, Water Sci. Technol., 77 (2018) 525–533.
  23. Q. Wu, C. Zheng, J. Zhang, F. Zhang, Nitrate removal by a permeable reactive barrier of Fe0: a model based evaluation, J. Earth Sci., 28 (2017) 447–456.
  24. H. Dong, Q. He, G. Zeng, L. Tang, L. Zhang, Y. Xie, Y. Zeng, F. Zhao, Degradation of trichloroethene by nanoscale zerovalent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA, Chem. Eng. J., 316 (2017) 410–418.
  25. I. Dror, O.M. Jacov, A. Cortis, B. Berkowitz, Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero valent iron, ACS Appl. Mater. Interfaces, 4 (2012) 3416–3423.
  26. N. Krasae, K. Wantala, Enhanced nitrogen selectivity for nitrate reduction on Cu–nZVI by TiO2 photocatalysts under UV irradiation, Appl. Surf. Sci., 380 (2016) 309–317.
  27. K. Pawlak, J. Fronczyk, K. Garbulewski, Reactivity of nano zero valent iron in permeable reactive barriers, Pol. J. Chem. Technol., 17 (2015) 1–7.
  28. M. Turabik, U.B. Simsek, Effect of synthesis parameters on the particle size of the zero valent iron nanoparticles, Inorg. Nano Metal Chem., 47 (2017) 1033–1043.
  29. S. Xavier, R. Gandhimathi, P.V. Nidheesh, S. Thanga Ramesh, Comparative removal of Magenta MB from aqueous solution by homogeneous and heterogeneous photo-Fenton processes, Desal. Wat. Treat., 57 (2015) 12832–12841.
  30. H. Tamura, K. Goto, T. Yotsuyanagi, M. Nagayama, Spectrophotometric determination of iron (II) with liophenanthroline in the presence of large amounts of iron (III), Talanta, 21 (1973) 314–318.
  31. P.V. Nidheesh, R. Gandhimathi, S. Velmathib, N.S. Sanjinib, Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solutions, RSC Adv., 4 (2014) 5698.
  32. A. Liu, J. Liu, B. Pan, W. Zhang, Formation of lepidocrocite (g-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water, RSC Adv., 4 (2014) 57377.
  33. C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31 (1997) 2154–2156.
  34. F. Fua, D.D. Dionysiou, H. Li, The use of zero valent iron for groundwater remediation and wastewater treatment: a review, J. Hazard. Mater., 267 (2014), 194–205.
  35. S.H. Joo, A.J. Feitz, D.L. Sedlak, T.D. Waite, Quantification of the oxidizing capacity of nanoparticulate zero valent iron, Environ. Sci. Technol., 39 (2005) 1263–1268.
  36. C.R. Marcelo, R.P. Lopes, J.C. Cruz, M.A. Nascimento, A.A. Silva, C.F. Lima, Evaluation of different parameters on the acetamiprid degradation by bimetallic Fe/Ni nanoparticles, Sep. Purif. Technol., 171 (2016) 256–262.
  37. Y.H. Shih, C.P. Tso, L.Y. Tung, Rapid degradation of methyl orange with nanoscale zerovalent iron particles, J. Environ. Eng. Manage., 20 (2010) 137–143.
  38. M. Zhang, Q. Zhao, Z. Ye, Organic pollutants removal from 2,4,6-trinitrotoluene(TNT) red water using low cost activated coke, J. Environ. Sci., 23 (2011) 1962–1969.
  39. D.W. Elliott, H.L. Lien, W.X. Zhang, Degradation of lindane by zero valent iron nanoparticles, J. Environ. Eng., 135 (2009) 317–324..
  40. R. Rakhshaee, Rule of Fe0 nano-particles and biopolymer structures in kinds of the connected pairs to remove Acid Yellow 17 from aqueous solution: simultaneous removal of dye in two paths and by four mechanisms, J. Hazard. Mater., 197 (2011) 144–152.
  41. B.A. Lenell, Y. Arai, Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media, J. Hazard. Mater., 321 (2017) 335–343.
  42. A.J. Feitz, S.H. Joo, J. Guan, Q. Sun, D.L. Sedlak, T.D. Waite, Oxidative transformation of contaminants using colloidal zero valent iron, Colloids Surf., A, 265 (2005) 88–94.
  43. X. Jin, Z. Chen, Z. Chen, R. Zhou, Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution, Mater. Res. Bull., 61 (2015) 433–438.
  44. Y. Lin, Z. Chen, Z. Chen, M. Megharaj, R. Naidu, Decoloration of acid violet red B by bentonite-supported nanoscale zerovalent iron: reactivity, characterization, kinetics and reaction pathway, Appl. Clay Sci., 93–94 (2014) 56–61.
  45. J. Cao, L. Wei, Q. Huang, L. Wang, S. Han, Reducing degradation of azo dye by zero valent iron in aqueous solution, Chemosphere, 38 (1999) 565–571.
  46. P.N. Moza, K. Hustert, E. Feicht, A. Kettrup, Photolysis of imidacloprid in aqueous solution, Chemosphere, 36 (1998) 497–502.
  47. M.L. Dell’arciprete, J.L. Santos, A.A. Sanz, R. Vicente, A.M. Amat, J.P. Furlong, D.O. Martiere, M.C. Gonzalez, Reactivity of hydroxyl radicals with neonicotinoid insecticides: mechanism and changes in toxicity, Photochem. Photobiol. Sci., 8 (2009) 1016–1023.
  48. N. Schippers, W. Schwack, Photochemistry of imidacloprid in model systems, J. Agric. Food Chem., 56 (2008) 8023–8029.
  49. F. Bourgin, L. Violleau, J. Debrauwer, Ozonation of imidacloprid in aqueous solutions: reaction monitoring and identification of degradation products, J. Hazard. Mater., 190 (2011) 60–68.
  50. C. Noubactep, An analysis of the evolution of reactive species in Fe0/H2O systems, J. Hazard. Mater., 168 (2009) 1626–1631.
  51. S.H. Joo, D. Zhao, Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer, Chemosphere, 70 (2008) 418–425.
  52. J. Lin, X. Weng, R. Dharmarajan, Z. Chen, Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres, Chemosphere, 169 (2017) 413–417.
  53. A.W. McPherson, M.N. Goltz, A. Agrawal, Pollutant Degradation by Nanoscale Zero Valent Iron (nZVI): Role of Polyelectrolyte stabilization and Catalytic Modification on nZVI Performance, American Chem. Soc. Dayton, Ohio, 2013, pp. 160–191.
  54. A. Liu, J. Liu, J. Han, W. Zhang, Evolution of nanoscale zerovalent iron (nZVI) in water: microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides, J. Hazard. Mater., 322 (2017) 129–135.
  55. Y. Furukawa, J.W. Kim, J. Watkins, R.T. Wilkin, Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron, Environ. Sci. Technol., 36 (2002) 5469–5475.
  56. C. Noubactep, A critical review on the process of contaminant removal in Fe0–H2O systems, Environ. Technol., 29 (2009) 909–920.
  57. T.B. Scott, I.C. Popescu, R.A. Crane, C. Noubactep, Nanoscale metallic iron for the treatment of solutions containing multiple inorganic contaminants, J. Hazard. Mater., 186 (2011) 280–287.
  58. Y. Wu, J. Zhang, Y. Tong, X. Xu, Chromium (VI) reduction in aqueous solutions by Fe3O4 stabilized Fe0 nanoparticles, J. Hazard. Mater., 172 (2009) 1640–1645.
  59. D. Redlich, N. Shahin, P. Ekici, A. Friess, H. Parlar, Kinetical study of the photoinduced degradation of imidacloprid in aquatic media, Clean Soil Air Water, 35 (2007) 452–458.
  60. X. Liu, Y. Tian, X. Zhou, Z. Liu, L. Huang, Zero-valent aluminum as reducer in sodium carbonate solution for degradation of imidacloprid, J. Chin. Chem. Soc., 63 (2016) 4754–4760.
  61. J. Tang, X. Huang, X. Huang, L. Xiang, Q. Wang, Photocatalytic degradation of imidacloprid in aqueous suspension of TiO2 supported on H-ZSM-5, Environ. Earth Sci., 66 (2012) 441–445.
  62. M. Turabik, N. Oturan, B. Gozmen, M.A. Oturan, Efficient removal of insecticide imidacloprid from water by electrochemical advanced oxidation processes, Environ. Sci. Pollut. Res. Int., 21 (2014) 8387–8397.