References

  1. T.L. Zaitseva, S.V. Parmon, Composition and properties of the fractions of a water-ethanol extract from peat, Solid Fuel Chem., 43 (2009) 273–276.
  2. C. Zaccone, V. D’Orazio, W. Shotyk, T.M. Miano, Chemical and spectroscopic investigation of porewater and aqueous extracts of corresponding peat samples throughout a bog core (Jura Mountains, Switzerland), J. Soils Sediments, 9 (2009) 443–456.
  3. B.A. de Melo, F.L. Motta, M.H.A. Santana, Humic acids: structural properties and multiple functionalities for novel technological developments, Mater. Sci. Eng., C, 62 (2016) 967–974.
  4. J.A. Navarrete, K. Tsutsuki, Chemical and spectroscopic properties of soil hydrophilic fulvic acid purified by tangential flow ultrafiltration, Clean Soil Air Water, 43 (2015) 1044–1051.
  5. P. Boguta, Z. Sokolowska, K. Skic, Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMSFTIR) to monitor chemical properties and thermal stability of fulvic and humic acids, PLoS One, 12 (2017) e0189653.
  6. M. Tarnawski, K. Depta, D. Grejciun, B. Szelepin, HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract—a natural immunomodulatory, J. Pharm. Biomed. Anal., 4 (2006) 182–188.
  7. J. Raczova, M. Hutta, V. Komorowska, Profiling of Soil and Peat Humic Substances by Anion-Exchange Chromatography, CECE 2012: 9th International Interdisciplinary Meeting on Bioanalysis, 2012, pp. 163–167.
  8. A.G. Zavarzina, V.V. Demin, T.I. Nifant’eva, V.M. Shkinev, T.V. Danilova, B.Y. Spivakov, Extraction of humic acids and their fractions in poly(ethylene glycol)-based aqueous biphasic systems, Anal. Chim. Acta, 452 (2002) 95–103.
  9. L. Ringqvist, P. Igsell, K. Bergner, E.-L. Lind, Optimization of polymer dosage for peat dewatering, Energy Fuels, 6 (1992) 578–580.
  10. L. Ringqvist, E.L. Lind, G. Wikander, Pretreatment method for peat dewatering, Fuel, 70 (1991) 533–537.
  11. M.J. Aho, P.M. Pirkonen, Efficiency and environmental effects of peat dewatering by mechanical pressing, Fuel, 72 (1993) 239–243.
  12. A.E. Afanasev, Contact interactions between particles in the course of dewatering colloidal capillary-porous peat bodies, Coll. J. USSR, 53 (1991) 368–372.
  13. Polish Patent No. 296811, 1992.
  14. N. Zhang, W. Zhu, H. He, Y. Lv, Experimental study on sedimentation and consolidation of soil particles in dredged slurry, KSCE J. Civ. Eng., 21 (2017) 2596–2606.
  15. B. Klove, Settling of peat in sedimentation ponds, J. Environ. Sci. Health Part A, 32 (1997) 1507–1523.
  16. M. Kabsch-Korbutowicz, A. Urbanowska, Comparison of polymeric and ceramic ultrafiltration membranes for separation of natural organic matter from water, Environ. Prot. Eng., 36 (2010) 125–135.
  17. P. Kovacs, J. Posta, Separation of humic acids using capillary isoelectric focusing, Microchem. J., 79 (2005) 49–54.
  18. E. Soyer, S.Y. Hunce, O. Algiray, Characterization of apricot stone shells as a rapid filter medium, Desal. Wat. Treat., 93 (2017) 318–323.
  19. J.C. Akunna, J.M. O’Keeffe, R. Allan, Reviewing factors affecting the effectiveness of decentralised domestic wastewater treatment systems for phosphorus and pathogen removal, Desal. Wat. Treat., 91 (2017) 40–47.
  20. K. Gunes, S.C. Ayaz, Wastewater treatment by peat filtration, Frasenius Environ. Bull., 7 (1998) 777–782.
  21. G.N. Mathavan, T. Viraraghavan, Coalescence filtration of an oil-in-water emulsion in a peat bed, Water Res., 26 (1992) 91–98.
  22. G. Mckay, Peat – an adsorbent – filtration medium for wastewater-treatment, Water Serv., 84 (1980) 357–359.
  23. M.P. Volarovi, N.I. Gamayuno, K.S. Pantelei, Change in peat structure during filtration of aqueous acid and salt solutions – compaction aggregation of peat associates, Coll. J. Russ. Acad. Sci., 34 (1972) 286–290.