References

  1. X. Liu, W. Di, W. Qin, Cooperative luminescence mediated near infrared photo catalysis of CaF2: Yb@BiVO4 composites, App. Catal., B 205 (2017) 158–164.
  2. C. Yu, C.Y. Jimmy, A simple way to prepare C–N-codoped TiO2 photo catalyst with visible-light activity, Catal. Lett., 129(3–4) (2009) 462.
  3. C. Yu, L. Wei, W. Zhou, D.D. Dionysiou, L. Zhu, Q. Shu, H. Liu, A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photo catalyst with high performance in pollutants degradation, Chemosphere, 157 (2016) 250–261.
  4. C. Yu, W. Zhou, H. Liu, Y. Liu, D.D. Dionysiou, Design and fabrication of micro sphere photo catalysts for environmental purification and energy conversion, Chem. Eng. J., 287 (2016) 117–129.
  5. C. Yu, W. Zhou, L. Zhu, G. Li, K. Yang, R. Jin, Integrating plasmonic Au nano rods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photo catalysis, App. Cata. B: Envir., 184 (2016) 1–11.
  6. S.-C. Jung, N. Imaishi, Preparation, crystal structure, and photocatalytic activity of TiO2 films by chemical vapor deposition, Kor. J. Chem. Eng., 18(6) (2001) 867–872.
  7. W.X. Xianyu, M.K. Park, W.I. Lee, Thickness effect in the photo catalytic activity of TiO2 thin films derived from sol-gel process, Kor. J. Chem. Eng., 18(6) (2001) 903–907.
  8. S.S. Lee, H.J. Kim, K.T. Jung, H.S. Kim, Y.G. Shul, Photo catalytic activity of metal ion (Fe or W) doped titania, Korean J. Chem. Engng., 18(6) (2001) 914–918.
  9. H. Yu, X. Zheng, Z. Yin, F. Tag, B. Fang, K. Hou, Preparation of nitrogen-doped TiO2 nanoparticle catalyst and its catalytic activity under visible light, Chin. J. Chem. Eng., 15(6) (2007) 802–807.
  10. W. Zhuang, L. Lu, W. Li, R. An, X. Feng, X. Wu, Y. Zhu, X. Lu, In-situ synthesized mesoporous TiO2-B/anatase micro particles: Improved anodes for lithium ion batteries, Chin. J. Chem. Eng., 23(3) (2015) 583–589.
  11. Y. Liu, S. Zhou, F. Yang, H. Qin, Y. Kong, Degradation of phenol in industrial wastewater over the F–Fe/TiO2 photo catalysts under visible light illumination, Chin. J. Chem. Eng., 24(12) (2016) 1712–1718.
  12. S. Zhang, L. Li, Y. Liu, Q. Zhang, TiO2–SA–Arg nano particles stabilized pickering emulsion for photo catalytic degradation of nitrobenzene in a rotating annular reactor, Chin. J. Chem. Eng., 25(2) (2017) 223–231.
  13. J.G. McEvoy, W. Cui, Z. Zhang, Degradative and disinfective properties of carbon-doped anatase–rutile TiO2 mixtures under visible light irradiation, Catal. Today, 207 (2013) 191–199.
  14. M. Safari, M. Nikazar, M. Dadvar, Photo catalytic degradation of methyl tert-butyl ether (MTBE) by Fe-TiO2 nanoparticles, Ind. Eng. Chem. Res., 19(5) (2013) 1697–1702.
  15. H. Slimen, H. Lachheb, S. Qourzal, A. Assabbane, A. Houas, The effect of calcination atmosphere on the structure and photo activity of TiO2 synthesized through an unconventional doping using activated carbon, J. Environ. Chem. Eng., 3(2) (2015) 922–929.
  16. N. Aman, N.N. Das, T. Mishra, Effect of N-doping on visible light activity of TiO2–SiO2 mixed oxide photo catalysts, J. Environ. Chem. Eng., 4(1) (2016) 191–196.
  17. V.S. Protsenko, E.A. Vasil’eva, A.V. Tsurkan, A.A. Kityk, S.A. Korniy, F.I. Danilov, Fe/TiO2 composite coatings modified by ceria layer: Electrochemical synthesis using environmentally friendly methane sulfonate electrolytes and application as photo catalysts for organic dyes degradation, J. Environ. Chem. Eng., 5(1) (2017) 136–146.
  18. N.T. Thao, D.T.H. Ly, H.T.P. Nga, D.M. Hoan, Oxidative removal of rhodamine B over Ti-doped layered zinc hydroxide catalysts, J. Environ. Chem. Eng., 4(4, Part A) (2016) 4012–4020.
  19. M. Pazoki, M. Parsa, R. Farhadpour, Removal of the hormones dexamethasone (DXM) by Ag doped on TiO2 photocatalysis, J. Environ. Chem. Eng., 4(4, Part A) (2016) 4426–4434.
  20. M. Sanchez-Dominguez, G. Morales-Mendoza, M.J. Rodriguez-Vargas, C.C. Ibarra-Malo, A.A. Rodriguez-Rodriguez, A.V. Vela-Gonzalez, S.A. Perez-Garcia, R. Gomez, Synthesis of Zn-doped TiO2 nanoparticles by the novel oil-in-water (O/W) micro emulsion method and their use for the photo catalytic degradation of phenol, J. Environ. Chem. Eng., 3(4, Part B) (2015) 3037–3047.
  21. V. Bhatia, A. Dhir, Transition metal doped TiO2 mediated photo catalytic degradation of anti-inflammatory drug under solar irradiations, J. Environ. Chem. Eng., 4(1) (2016) 1267–1273.
  22. C. Yu, G. Li, S. Kumar, H. Kawasaki, R. Jin, Stable Au25(SR)18/TiO2 composite nano structure with enhanced visible light photo catalytic activity, Phys. Chem. Lett., 4(17) (2013) 2847–2852.
  23. C. Yu, D. Cai, K. Yang, C.Y. Jimmy, Y. Zhou, C. Fan, Sol–gel derived S, I-codoped mesoporous TiO2 photocatalyst with high visible-light photo catalytic activity, J. Phys. Chem. Solids, 71(9) (2010) 1337–1343.
  24. C. Yu, Z. Wu, R. Liu, D.D. Dionysiou, K. Yang, C. Wang, H. Liu, Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination, Appl. Catal., B 209 (2017) 1–11.
  25. C. Di Valentin, G. Pacchioni, A. Selloni, Theory of carbon doping of titanium dioxide, Chem. Mater., 17(26) (2005) 6656–6665.
  26. Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi, Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity, Appl. Catal., B, 91(1) (2009) 355–361.
  27. H. Bazrafshan, Z.A. Tesieh, S. Dabirnia, A. Naderifar, Low temperature synthesis of TiO2 nanoparticles with high photo catalytic activity and photo electrochemical properties through sol–gel method, Mater. Manuf. Process, 31(2) (2016) 119–125.
  28. C.-X. Xu, K.-J. Huang, Y. Fan, Z.-W. Wu, J. Li, Electrochemical determination of acetaminophen based on TiO2–graphene/poly(methyl red) composite film modified electrode, J. Mol. Liq., 165 (2012) 32–37.
  29. S. Yin, H. Hasegawa, D. Maeda, M. Ishitsuka, T. Sato, Synthesis of visible-light-active nano size rutile titania photo catalyst by low temperature dissolution–reprecipitation process, J. Photochem. Photobiol., A, 163(1) (2004) 1–8.
  30. H. Mahmoodian, O. Moradi, B. Shariatzadeha, T.A. Salehf, I. Tyagi, A. Maity, M. Asif, V.K. Gupta, Enhanced removal of methyl orange from aqueous solutions by poly HEMA–chitosan-MWCNT nano-composite, J. Mol. Liq., 202 (2015) 189–198.
  31. T. Varadavenkatesan, R. Selvaraj, R. Vinayagam, Phyto-synthesis of silver nano particles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye, J. Mol. Liq., 221 (2016) 1063–1070.
  32. P. Mokhtari, M. Ghaedi, K. Dashtian, M.R. Rahimi, M.K. Purkait, Removal of methyl orange by copper sulfide nano particles loaded activated carbon: Kinetic and isotherm investigation, J. Mol. Liq., 219 (2016) 299–305.
  33. C. Yu, L. Wei, J. Chen, Y. Xie, W. Zhou, Q. Fan, Enhancing the photo catalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3, Ind. Eng. Chem. Res., 53(14) (2014) 5759–5766.
  34. W. Li, D. Li, J. Wang, Y. Shao, J. You, F. Teng, Exploration of the active species in the photo catalytic degradation of methyl orange under UV light irradiation, J. Mol. Catal. A: Chem., 380 (2013) 10–17.
  35. Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, Highly efficient photo catalytic degradation of organic pollutants by PANI-modified TiO2 composite, J. Phys. Chem., C, 116(9) (2012) 5764–5772.
  36. E. Haritha, S.M. Roopan, G. Madhavi, G. Elango, P. Arunachalam, Catunaregum spinosa capped Ag NPs and its photo catalytic application against amaranth toxic azo dye, J. Mol. Liq., 225 (2017) 531–535.
  37. A. S, S. M, [EMIM] BF4 ionic liquid-mediated synthesis of TiO2 nanoparticles using Vitex negundo Linn extract and its antibacterial activity, J. Mol. Liq., 221 (2016) 986–992.
  38. W. Desong, X. Libin, L. Qingzhi, L. Xueyan, A. Jing, D. Yandong, Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C, J. Hazard. Mater., 192 (2011) 150–159.
  39. D. Wang, L. Xiao, Q. Luo, X. Li, J. An, Y. Duan, Highly efficient visible light TiO2 photo catalyst prepared by sol–gel method at temperatures lower than 300°C, J. Hazard. Mater., 192 (2011) 150–159.
  40. Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi, Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity, Appl. Catal., B, 91(1–2) (2009) 355–361.
  41. I.M. Ibrahim, M.E. Moustafa, M.R. Abdelhamid, Effect of organic acids precursors on the morphology and size of ZrO2 nanoparticles for photocatalytic degradation of Orange G dye from aqueous solutions, J. Mol. Liq., 223 (2016) 741–748.
  42. H. Bazrafshan, Z.A. Tesieh, S. Dabirnia, R.S. Touba, H. Manghabati, B. Nasernejad, Synthesis of novel α-Fe2O3 nanorods without surfactant and its electrochemical performance, Powder Technol., 308 (2017) 266–272.
  43. H.I. De Lasa, B. Serrano, M. Salaices, Photocatalytic reaction engineering, Springer 2005.
  44. M.R. Sohrabi, M. Ghavami, Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters, J. Hazard. Mater., 153(3) (2008) 1235–1239.
  45. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review, J. Environ. Manage., 92(3) (2011) 311–330.
  46. T. Sugiyama, A.H. Dabwan, H. Katsumata, T. Suzuki, S. Kaneco, Optimization of conditions for the photocatalytic degradation of EDTA in aqueous solution with Fe-doped titanium dioxide, Open J. Inor. Non-meta. Mat., 4(3) (2014) 28.