References
- L.S. Pierson, E.A. Pierson, Metabolism and function of
phenazines in bacteria: impacts on the behavior of bacteria in
the environment and biotechnological processes, Appl. Microbiol.
Biotechnol., 86 (2010) 1659–1670.
- Q. Zhao, M. Bilal, S. Yue, H. Hu, W. Wang, X. Zhang, Identification
of biphenyl 2, 3-dioxygenase and its catabolic role for
phenazine degradation in Sphingobium yanoikuyae B1, J. Environ.
Manag., 204 (2017) 494–501.
- D.V. Mavrodi, W. Blankenfeldt, L.S. Thomashow, M. Mentel,
Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis
and regulation, Annu. Rev. Phytopathol., 44 (2006) 417–445.
- J.B. Laursen, J. Nielsen, Phenazine natural products: biosynthesis,
synthetic analogues, and biological activity, Chem.
Rev., 104 (2004) 1663–1686.
- X.-J. Jin, H.-S. Peng, H.-B. Hu, X.-Q. Huang, W. Wang, X.-H.
Zhang, iTRAQ-based quantitative proteomic analysis
reveals potential factors associated with the enhancement of
phenazine-1-carboxamide production in Pseudomonas chlororaphis P3, Sci. Rep., 6 (2016) 27393.
- K. Liu, H. Hu, W. Wang, X. Zhang, Genetic engineering of
Pseudomonas chlororaphis GP72 for the enhanced production of
2‑hydroxyphenazine, Microb. Cell Fact., 15 (2016) 131.
- M. Bilal, S. Guo, H.M.N. Iqbal, H. Hu, W. Wang, X. Zhang,
Engineering Pseudomonas for phenazine biosynthesis, regulation,
and biotechnological applications: a review, World J.
Microbiol. Biotechnol., 33 (2017) 191.
- S. Guo, Y. Wang, B. Dai, W. Wang, H. Hu, X. Huang, X. Zhang,
PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis
in Pseudomonas chlororaphis HT66, Appl. Microbiol.
Biotechnol., 101 (2017) 7165–7175.
- H. Hu, Y. Li, L. Liu, J. Zhao, W. Wang, X. Zhang, Production
of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered
Pseudomonas chlororaphis GP72, Appl. Microbiol. Biotechnol.,
101 (2017) 6607–6613.
- N. Guttenberger, W. Blankenfeldt, R. Breinbauer, Recent developments
in the isolation, biological function, biosynthesis, and
synthesis of phenazine natural products, Bioorg. Med. Chem.,
S0968–0896: (2017) 31180–31844.
- C. Selin, R. Habibian, N. Poritsanos, S.N. Athukorala, D. Fernando,
T.R. de Kievit, Phenazines are not essential for Pseudomonas
chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum,
but do play a role in biofilm formation, FEMS Microbiol. Ecol.,
71 (2010) 73–83.
- L.S. Thomashow, D.M. Weller, Role of a phenazine antibiotic
from Pseudomonas fluorescens in biological control of Gaeumannomyces
graminis var. tritici, J. Bacteriol., 170 (1988) 3499–
3508.
- C. Nelson, J. Toohey, Methods of controlling the growth of
noxious plants. US Patent 1968, 3367765.
- K.K. Chen, H.B. Hu, W. Wang, X.H. Zhang, Y.Q. Xu, Metabolic
degradation of phenazine-1-carboxylic acid by the strain
Sphingomonas sp DP58: the identification of two metabolites,
Biodegradation, 19 (2008) 659–667.
- L. Zhao, Q. Shen, T. Yang, Residue and degradation of shenqinmycin
in capsicum and soil, Nongyao, 47 (2008) 277–278.
- T. Katagi, Photo degradation of pesticides on plant and soil
surfaces, Rev. Environ. Contam. Toxicol., 182 (2004) 181–189.
- C. Propst, L. Lubin, Light-mediated changes in pigmentation
of Pseudomonas aeruginosa cultures, J. Gen. Microbiol., 113
(1979) 261–266.
- K.J. Reszka, P.J. Bilski, B.E. Britigan, Quenching of singlet oxygen
by pyocyanin and related phenazines, Photochem. Photobiol.,
86 (2010) 742–746.
- M. Chen, H. Cao, H. Peng, H. Hu, W. Wang, X. Zhang, Reaction
kinetics for the biocatalytic conversion of Phenazine-1-carboxylic
acid to 2-hydroxyphenazine, PLoS One, 9 (2014) e98537.
- Z. Lu, Z. Hou, X. Wang, S. Wang, Y. Shang, X. Yuan, Photo degradation
of new herbicide HW-02 in organic solvents, J. Environ.
Sci., (China) 22 (2010) 1774–1778.
- I. Schneemann, J. Wiese, A.L. Kunz, J.F. Imhoff, Genetic
approach for the fast discovery of phenazine producing bacteria,
Mar. Drugs, 9 (2011) 772–789.
- C. Liu, Z. Qiang, F. Tian, T. Zhang, Photo degradation of etridiazole
by UV radiation during drinking water treatment, Chemosphere,
76 (2009) 609–615.
- D. Zhou, W. Huang, F. Wu, C. Han, Y. Chen, Photo degradation
of chloromycetin in aqueous solutions: kinetics and influencing
factors, React. Kinet. Mech. Catal., 100 (2010) 45–53.
- J. Zhang, W. Wang, X. Lu, Y. Xu, X. Zhang, The stability and
degradation of a new biological pesticide, pyoluteorin, Pest
Manag. Sci., 66 (2010) 248–252.
- C.M. Sharpless, K.G. Linden, Experimental and model comparisons
of low- and medium-pressure Hg lamps for the direct
and H2O2 assisted UV photo degradation of N-nitrosodimethylamine
in simulated drinking water, Environ. Sci. Technol.,
37 (2003) 1933–1940.
- C.T. Bull, D. Weller, L.S. Thomashow, Relationship between
root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79, Phytopathology,
81 (1991) 954–959.
- J. Lee, E.A. Decker, Effects of metal chelator, sodium azide,
and super oxide dismutase on the oxidative stability in riboflavin-
photo sensitized oil-in-water emulsion systems, J. Agric.
Food Chem., 59 (2011) 6271–6276.
- Q. Zhao, H. Hu, W. Wang, X. Huang, X. Zhang, Novel
three-component phenazine-1-carboxylic acid 1, 2-dioxygenase
in Sphingomonas wittichii DP58, Appl. Environ. Microbiol.,
83 (2017) e00133-17.
- Q. Zhao, S. Yue, M. Bilal, H. Hu, W. Wang, X. Zhang, Comparative
genomic analysis of 26 Sphingomonas and Sphingobium strains: dissemination of bioremediation capabilities, biodegradation
potential and horizontal gene transfer, Sci. Total
Environ., 576 (2017) 646–659.
- Q. Zhou, J.J. Su, H.X. Jiang, X.Q. Huang, Y.Q. Xu, Optimization
of phenazine-1-carboxylic acid production by a gacA/qscR-inactivated
Pseudomonas sp M18GQ harboring pME6032Phz
using response surface methodology, Appl. Microbiol. Biotechnol.,
86 (2010) 1761–1773.
- K.J. Reszka, Y. O’Malley, M.L. McCormick, G.M. Denning,
B.E. Britigan, Oxidation of pyocyanin, a cytotoxic product
from Pseudomonas aeruginosa, by microperoxidase 11 and
hydrogen peroxide, Free Radic. Biol. Med., 36 (2004) 1448–1459.