References

  1. M. Visa, Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment, Powder Technol., 294 (2016) 338–347.
  2. H. Pahlavanzadeh, A. Keshtkar, J. Safdari, Z. Abadi, Biosorption of nickel (II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies, J. Hazard. Mater., 175 (2010) 304–310.
  3. H. Esfandian, H. Javadian, M. Parvini, B. Khoshandam, R. Katal, Batch and column removal of copper by modified brown algae sargassum bevanom from aqueous solution, Asia-Pacific J. Chem. Eng., 8 (2013) 665–678.
  4. I. Scheiber, R. Dringen, J.F. Mercer, Copper: effects of deficiency and overload. Interrelations between essential metal ions and human diseases, Springer, 2013, pp. 359–387.
  5. F. Geyikçi, S. Çoruh, E. Kılıç, Development of experimental results by artificial neural network model for adsorption of Cu2+ using single wall carbon nanotubes, Sep. Sci. Technol., 48 (2013) 1490–1499.
  6. H. Cheng, Cu(II) Removal from lithium bromide refrigerant by chemical precipitation and electrocoagulation, Sep. Purif. Technol., 52 (2006) 191–195.
  7. N.G. Zaki, I. Khattab, N.A. El-Monem, Removal of some heavy metals by CKD leachate, J. Hazard. Mater., 147 (2007) 21–27.
  8. R. Katal, H. Pahlavanzadeh, Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: Application to the treatment of paper mill wastewater, Desalination, 265 (2011) 199–205.
  9. H. Ozaki, K. Sharma, W. Saktaywin, Performance of an ultralow- pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters, Desalination, 144 (2002) 287–294.
  10. L. Canet, M. Ilpide, P. Seta, Efficient facilitated transport of lead, cadmium, zinc, and silver across a flat-sheet-supported liquid membrane mediated by lasalocid A, Sep. Sci. Technol., 37 (2002) 1851–1860.
  11. X. Guo, S. Zhang, X.-q. Shan, Adsorption of metal ions on lignin, J. Hazard. Mater., 151 (2008) 134–142.
  12. S. Orlov, K. Burkov, M.Y. Skripkin, Adsorption of copper (II) ions from aqueous solutions on alumina industrial wastes, Russ. J. Appl. Chem., 84 (2011) 2029–2032.
  13. V.C. Dos Santos, J.V. De Souza, C.R. Tarley, J. Caetano, D.C. Dragunski, Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified, Water, Air, Soil Pollut., 216 (2011) 351–359.
  14. F. Ji, C. Li, B. Tang, J. Xu, G. Lu, P. Liu, Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution, Chem. Eng. J., 209 (2012) 325–333.
  15. H.G. Roh, S.G. Kim, J. Jung, Adsorption of heavy-metal ions (Pb2+, Cu2+) on perm-lotion-treated human hair, Korean J. Chem. Eng., 31 (2014) 310–314.
  16. B. Singha, S.K. Das, Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes, Colloids Surfaces B: Biointerfaces, 107 (2013) 97–106.
  17. I. Cretescu, G. Soreanu, M. Harja, A low-cost sorbent for removal of copper ions from wastewaters based on sawdust/ fly ash mixture, Int. J. Environ. Sci. Technol., 12 (2015) 1799– 1810.
  18. M. Ahmad, A.R. Usman, S.S. Lee, S.-C. Kim, J.-H. Joo, J.E. Yang, Y.S. Ok, Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions, J. Ind. Eng. Chem., 18 (2012) 198–204.
  19. C. Jeon, Adsorption characteristics of waste crab shells for silver ions in industrial wastewater, Korean J. Chem. Eng., 31 (2014) 446–451.
  20. K.G. Bhattacharyya, S.S. Gupta, Removal of Cu(II) by natural and acid-activated clays: An insight of adsorption isotherm, kinetic and thermodynamics, Desalination, 272 (2011) 66–75.
  21. K.G. Bhattacharyya, S.S. Gupta, Removal of Cu(II) by natural and acid-activated clays: An insight of adsorption isotherm, kinetic and thermodynamics, Desalination, 272 (2011) 66–75.
  22. R. Katal, E. Hasani, M. Farnam, M.S. Baei, M.A. Ghayyem, Charcoal ash as an adsorbent for Ni(II) adsorption and its application for wastewater treatment, J. Chem. Eng. Data, 57 (2012) 374–383.
  23. M.J. Amiri, J. Abedi-Koupai, S.S. Eslamian, M. Arshadi, Adsorption of Pb (II) and Hg (II) ions from aqueous single metal solutions by using surfactant-modified ostrich bone waste, Desal. Water Treat., 57 (2016) 16522–16539.
  24. F. Fotovat, H. Kazemian, M. Kazemeini, Synthesis of Na-A and faujasitic zeolites from high silicon fly ash, Mater. Res. Bull., 44 (2009) 913–917.
  25. M. Visa, L. Isac, A. Duta, Fly ash adsorbents for multi-cation wastewater treatment, Appl. Surf. Sci., 258 (2012) 6345–6352.
  26. J.d.C. Izidoro, D.A. Fungaro, J.E. Abbott, S. Wang, Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems, Fuel, 103 (2013) 827–834.
  27. N.G. Turan, B. Mesci, O. Ozgonenel, The use of artificial neural networks (ANN) for modeling of adsorption of Cu(II) from industrial leachate by pumice, Chem. Eng. J., 171 (2011) 1091– 1097.
  28. M. Dutta, P. Ghosh, J.K. Basu, Application of artificial neural network for the decolorization of direct blue 86 by using microwave assisted activated carbon, J. Taiwan Inst. Chem. Eng., 43 (2012) 879–888.
  29. U. Yurtsever, M. Yurtsever, İ.A. Şengil, N. Kıratlı Yılmazçoban, Fast artificial neural network (FANN) modeling of Cd(II) ions removal by valonia resin, Desal. Water Treat., 56 (2015) 83–96.
  30. S. Nag, A. Mondal, N. Bar, S.K. Das, Biosorption of chromium (VI) from aqueous solutions and ANN modelling, Environ. Sci. Pollut. Res., 24 (2017) 18817–18835.
  31. B. Singha, N. Bar, S.K. Das, The use of artificial neural network (ANN) for modeling of Pb (II) adsorption in batch process, J. Molec. Liq., 211 (2015) 228–232.
  32. B. Singha, N. Bar, S.K. Das, The use of artificial neural networks (ANN) for modeling of adsorption of Cr (VI) ions, Desal. Water Treat., 52 (2014) 415–425.
  33. S.H. Asl, M. Ahmadi, M. Ghiasvand, A. Tardast, R. Katal, Artificial neural network (ANN) approach for modeling of Cr (VI) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA), J. Ind. Eng. Chem., 19 (2013) 1044–1055.
  34. P. Davoodi, S.M. Ghoreishi, A. Hedayati, Optimization of supercritical extraction of galegine from Galega officinalis L.: Neural network modeling and experimental optimization via response surface methodology, Korean J. Chem. Eng., (2015) 1–12.
  35. S. Ghoreishi, A. Hedayati, S. Mousavi, Quercetin extraction from Rosa damascena Mill via supercritical CO2: Neural network and adaptive neuro fuzzy interface system modeling and response surface optimization, J. Supercrit. Fluids, 112 (2016) 57–66.
  36. A. Hedayati, S. Ghoreishi, Artificial neural network and adaptive neuro-fuzzy interface system modeling of supercritical CO2 extraction of glycyrrhizic acid from Glycyrrhiza glabra L, Chem. Prod. Process Model, 11 (2016) 217–230.
  37. D. Kamar, Fly ash-coal combustion residue, EBS 425/3–Mineral Perindustrian, (2009).
  38. J.d.C. Izidoro, D.A. Fungaro, F.S. dos Santos, S. Wang, Characteristics of Brazilian coal fly ashes and their synthesized zeolites, Fuel Process. Technol., 97 (2012) 38–44.
  39. M. Harja, G. Buema, D.M. Sutiman, C. Munteanu, D. Bucur, Low cost adsorbents obtained from ash for copper removal, Korean J. Chem. Eng., 29 (2012) 1735–1744.
  40. C.-F. Wang, J.-S. Li, L.-J. Wang, X.-Y. Sun, Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method, J. Hazard. Mater., 155 (2008) 58–64.
  41. H. Pahlavanzadeh, R. Katal, H. Mohammadi, Synthesize of polypyrrole nanocomposite and its application for nitrate removal from aqueous solution, J. Ind. Eng. Chem., 18 (2012) 948–956.
  42. A.A. Babaei, A. Khataee, E. Ahmadpour, M. Sheydaei, B. Kakavandi, Z. Alaee, Optimization of cationic dye adsorption on activated spent tea: Equilibrium, kinetics, thermodynamic and artificial neural network modeling, Korean J. Chem. Eng., 33 (2016) 1352–1361.
  43. M. Šljivić, I. Smičiklas, S. Pejanović, I. Plećaš, Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia, Appl. Clay Sci., 43 (2009) 33–40.
  44. B. Al-Rashdi, C. Tizaoui, N. Hilal, Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide (B2O3/TiO2) adsorbent, Chem. Eng. J., 183 (2012) 294–302.
  45. F. Zhao, Y. Zou, X. Lv, H. Liang, Q. Jia, W. Ning, Synthesis of CoFe2O4–zeolite materials and application to the adsorption of gallium and indium, J. Chem. Eng. Data, 60 (2015) 1338–1344.
  46. L. Zhai, Z. Bai, Y. Zhu, B. Wang, W. Luo, Fabrication of chitosan microspheres for efficient adsorption of methyl orange, Chinese J. Chem. Eng., 26 (2017) 657–666.
  47. W.W. Ngah, L. Teong, R. Toh, M. Hanafiah, Utilization of chitosan– zeolite composite in the removal of Cu(II) from aqueous solution: adsorption, desorption and fixed bed column studies, Chem. Eng. J., 209 (2012) 46–53.
  48. R. Katal, H. Zare, Abouzar fani, Mohamad Omraei, G.D. Najafpour, Removal of zinc from aqueous phase by charcoal ash, World Appl. Sci. J., 13 (2011) 331–340.
  49. J. Lin, Y. Zhan, Z. Zhu, Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite, Colloids Surf. A: Physicochem. Eng. Asp., 384 (2011) 9–16.
  50. H. Esfandian, A. Samadi-Maybodi, M. Parvini, B. Khoshandam, Development of a novel method for the removal of diazinon pesticide from aqueous solution and modeling by artificial neural networks (ANN), J. Ind. Eng. Chem., 35 (2016) 295–308.
  51. A. Adamczuk, D. Kołodyńska, Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan, Chem. Eng. J., 274 (2015) 200–212.
  52. S. Wong, N.A.N. Yac’cob, N. Ngadi, O. Hassan, I.M. Inuwa, From pollutant to solution of wastewater pollution: synthesis of activated carbon from textile sludge for dyes adsorption, Chinese J. Chem. Eng., 26 (2017) 870–878.
  53. M.M. Dubinin, L. Radushkevich, Equation of the characteristic curve of activated charcoal, Chem. Zentr, 1 (1947) 875.
  54. T. Naiya, A. Bhattacharya, S. Das, Removal of Cd (II) from aqueous solutions using clarified sludge, J. Colloid Interf. Sci., 325 (2008) 48–56.
  55. J. Sola, J. Sevilla, Importance of input data normalization for the application of neural networks to complex industrial problems, IEEE Trans. Nucl. Sci., 44 (1997) 1464–1468.
  56. R.M. Aghav, S. Kumar, S.N. Mukherjee, Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents, J. Hazard. Mater., 188 (2011) 67–77.
  57. B. Al-Rashdi, C. Tizaoui, N. Hilal, Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide (B2O3/TiO2) adsorbent, Chem. Eng. J., 183 (2012) 294–302.
  58. S.-M. Lee, C. Laldawngliana, D. Tiwari, Iron oxide nano-particles-immobilized-sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated waste waters, Chem. Eng. J., 195–196 (2012) 103–111.
  59. S. Golkhah, M.H. Zavvar, H. Shirkhanloo, A. Khaligh, Removal of ions from aqueous solutions by cadmium sulfide nanoparticles, Int. J. Nanosci. Nanotechnol., 13 (2017) 105–117.
  60. L. Hui, D.-l. Xiao, H. Hua, L. Rui, P.-l. Zuo, Adsorption behavior and adsorption mechanism of Cu(II) ions on amino-functionalized magnetic nanoparticles, Trans. Nonferr. Metals Soc. China, 23 (2013) 2657–2665.
  61. S.I. Lyubchik, A.I. Lyubchik, O.L. Galushko, L.P. Tikhonova, J. Vital, I.M. Fonseca, S.B. Lyubchik, Kinetics and thermodynamics of the Cr (III) adsorption on the activated carbon from co-mingled wastes, Colloids Surf. A: Physicochem. Eng. Asp., 242 (2004) 151–158.