References

  1. V. Calisto, C.I.A. Ferreira, S.M. Santos, M.V. Gil, M. Otero, V.I. Esteves, Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water, Bioresour. Technol., 166 (2014) 335–344.
  2. H.R. Hwang, W.J. Choi, T.J. Kim, J.S. Kim, K.J. Oh, The preparation of an adsorbent from mixtures of sewage sludge and coaltar pitch using an alkaline hydroxide activation agent, Anal. Appl. Pyrolysis, 83 (2008) 220–226.
  3. T.J. Bandosz, K. Block, Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludgebased composite adsorbents, Appl. Catal. B-Environ., 67 (2006) 77–85.
  4. Q.R. Qian, K. Mochidzuki, T. Fujii, A. Sakoda, Removal of copper from aqueous solution using iron-containing adsorbents derived from methane fermentation sludge, J. Hazard. Mater., 172 (2009) 1137–1144.
  5. W.H. Li, Q.Y. Yue, B.Y. Gao, X.J. Wang, Y.F. Qi, Y.Q. Zhao, Y.J. Li, Preparation of sludge-based activated carbon made from paper mill sewage sludge by steam activation for dye wastewater treatment, Desalination, 278 (2011) 179–185.
  6. J.H. Tay, X.G. Chen, S. Jeyaseelan, N. Graham, Optimising the preparation of activated carbon from digested sewage sludge and coconut husk, Chemosphere, 44 (2001) 45–51.
  7. M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, H.R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, J. Hazard. Mater., 150 (2008) 322–327.
  8. Z.L. Zhu, A.M. Li, S. Zhong, F.Q. Liu, Q.X. Zhang, Preparation and characterization of polymer-based spherical activated carbons with tailored pore structure, J. Appl. Polym. Sci., 109 (2008) 1692–1698.
  9. T. Budinova, E. Ekinci, F. Yardim, A. Grimm, E. Björnbom, V. Minkova, M. Goranova, Characterization and application of activated carbon produced by H3PO4 and water vapor activation, Fuel Process. Technol., 87 (2006) 899–905.
  10. S. Hirunpraditkoon, N. Tunthong, A. Ruangchai, K. Nuithitikul, Adsorption cpacities of activated carbons prepared from bamboo by KOH activation, Proc. World Acad. Sci. Eng. Technol., (2011) 711.
  11. G. Cruz, M. Pirilä, M. Huuhtanen, L. Carrión, E. Alvarenga, R.L. Keiski, Production of activated carbon from cocoa (the obroma cacao) Pod Husk, J. Eviron. Eng-Asce, 2(2012) 109.
  12. P. Hadi, M. Xu, C. Ning, C.S.K. Lin, G. Mckay, A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment, Chem. Eng. J., 260 (2015) 895–906.
  13. L.C.A. Oliveira, E. Pereira, I.R. Guimaraes, A. Vallone, M. Pereira, J.P. Mesquita, K. Sapag, Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents, J. Hazard. Mater., 165 (2009) 87–94.
  14. M.J. Ahmed, S.K. Theydan, Adsorptive removal of p-nitrophenol on micro porous activated carbon by FeCl3 activation: equilibrium and kinetics studies, Desal. Water Treat., 55 (2015) 522–531.
  15. F. Suárez-García, A. Martínez-Alonso, J. Tascón, Pyrolysis of apple pulp: effect of operation conditions and chemical additives, J. Anal. Appl. Pyrolysis, 62 (2002) 93–109.
  16. K.F. Fu, Q.Y. Yue, B.Y. Gao, Y.Y. Sun, Y. Wang, Q. Li, P. Zhao, S. Chen, Physico chemical and adsorptive properties of activated carbons from Arundodonax Linn utilizing different iron salts as activating agents, J. Taiwan Inst. Chem. Eng., 45 (2014) 3007–3015.
  17. F. Rodrı́guez-Reinoso, A.C. Pastor, H. Marsh, M.A. Martı́nez, Preparation of activated carbon cloths from viscous rayon. Part II: physical activation processes, Carbon, 38 (2000) 379–395.
  18. Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  19. W.J. Weber, J.C. Morris, Kinetics of Adsorption on Carbon From Solution, J. sanit. Eng. Div. Am. Soc. Civ. Eng, 1 (1963) 1–2.
  20. X.D. Zhu, Y.C. Liu, F. Qian, C. Zhou, S.C. Zhang, J.M. Chen, Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal, Bioresour. Technol., 154 (2014) 209–214.
  21. G. Li, D.S. Zhang, M. Wang, J. Huang, L.H. Huang, Preparation of activated carbons from Iris tectorum employing ferric nitrate as dopant for removal of tetracycline from aqueous solutions, Ecotoxicol. Environ. Saf., 98 (2013) 273–282.
  22. I. Langmuir, Constitution and fundamental properties of solids and liquids: I, Solids, J. Am. Chem. Soc., 183 (1916) 102–105.
  23. X. Yang, G.R. Xu, H.R. Yu, Z. Zhang, Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal, Bioresour. Technol., 211 (2016) 566–573.
  24. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62 (1940) 1723–1732.
  25. Y.Y. Sun, Q.Y Yue, B.Y. Gao, B. Wang, Q. Li, L.H. Huang, X. Xu, Comparison of activated carbons from Arundodonax Linn with H4P2O7 activation by conventional and microwave heating methods, Chem. Eng. J., 192 (2012) 308–314.
  26. P. Devi, A.K. Saroha, Utilization of sludge based adsorbents for the removal of various pollutants: A review, Sci. Total Environ., (2016)16–33.
  27. Z. Aksu, E. Kabasakal, Batch adsorption of 2,4-dichlorophenoxy- acetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol., 35 (2004) 223–240.
  28. B.H. Hameed, A.A. Rahman, Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material, J. Hazard. Mater., 160 (2008) 576–581.
  29. C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42 (2004) 83–94.
  30. V.C. Srivastava, M.M. Swamy, I.D. Mall, B. Prasad, I.M. Mishra, Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics, Colloids Surf. A., 272 (2006) 89–104.
  31. Y.Y. Shen, S.L. Zhao, Y. Li, Q. Liu, C.D. Ma, H. Mao, Y. Liao, J. Ma, A feasible approach to dispose of soil washing wastes: adsorptive removal of chlorobenzene compounds in aqueous solutions using humic acid modified with monoolein (HA–M), RSC Adv., 7(2017) 9662–9668.
  32. J.L. Zou, Y. Dai, X. Wang, Z.Y. Ren, C.G Tian, K. Pan, S. Li, M. Abuobeidah, H.G. Fu, Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity, Bioresour. Technol., 142 (2013) 209.
  33. L.J. Kong, S.H. Tian, R.S. Luo, L. Wei, Y.T. Tu, Y. Xiong, Demineralization of sludge‐based adsorbent by post‐washing for development of porosity and removal of dyes, J. Chem. Technol. Biotechnol., 88 (2013) 1473–1480.
  34. D.J. Li, Y.S. Wu, L. F, L.Q. Zhang, Surface properties of SAC and its adsorption mechanisms for phenol and nitrobenzene, Bioresour. Technol., 113 (2012) 121–126.
  35. M. Otero, F. Rozada, L.F. Calvo, A.I. Garcıá , A. Morán, Elimination of organic water pollutants using adsorbents obtained from sewage sludge, Dyes Pigm., 57 (2003) 55–65.
  36. M.J. Martin, A. Artola, M.D. Balaguer, M. Rigola, Enhancement of the activated sludge process by activated carbon produced from surplus biological sludge, Biotechnol. Lett, 24 (2002) 163–168.
  37. S. Rio, C. Faur-Brasquet, L.L. Coq, P.L. Cloirec, Structure characterization and adsorption properties of pyrolyzed sewage sludge, Environ. Sci. Technol., 39 (2005) 4249–4257.
  38. S.I. Kim, T. Yamamoto, A. Endo, T. Ohmori, M. Nakaiwa, Adsorption of phenol and reactive dyes from aqueous solution on carbon cryogel micro spheres with controlled porous structure, Microporous Mesoporous Mater., 96 (2006) 191–196.
  39. C.O. Ania, J.B. Parra, J.J. Pis, Effect of texture and surface chemistry on adsorptive capacities of activated carbons for phenolic compounds removal, Fuel Process. Technol., 77–78 (2002) 337–343.