References

  1. E.I. Solomon, D.E. Heppner, E.M. Johnston, J.W. Ginsbach, J. Cirera, M. Qayyum, M.T. Kieber-Emmons, C.H. Kjaergaard, R.G. Hadt, L. Tian, Copper active sites in biology, Chem. Rev., 114 (2014) 3659–3853.
  2. T. Mondol, J. Aden, P. Wittung-Stafshede, Copper binding triggers compaction in N-terminal tail of human copper pump ATP7B, Biochem. Bioph. Res. Co., 470 (2016) 663–669.
  3. F. Tisato, C. Marzano, M. Porchia, M. Pellei, C. Santini, Copper in diseases and treatments, and copper-based anticancer strategies, Med. Res. Rev., 30 (2010) 708–749.
  4. S.S. Stavitskaya, V.M. Vikarchuk, M.F. Kovtun, O.I. Poddubnaya, A.M. Puziy, Adsorption of copper ions by carbon adsorbents modified by phosphoric acid at different temperatures, J. Water Chem. Technol., 36 (2014) 110–114.
  5. (a) A.P. Mosier, J. Behnke, E.T. Jin, N.C. Cady, Microbial biofilms for the removal of Cu2+ from CMP wastewater, J. Environ. Manage., 160 (2015) 67–72. (b) O.N. Kononova, M.A. Kuznetsova, A.M. Mel’nikov, N.S. Karplyakova, Y.S. Kononov, Sorption recovery of copper(II) and zinc(II) from aqueous chloride solutions, J. Serb. Chem. Soc., 79 (2014) 1037–1049.
  6. Y.H. Chou, J.H. Yu, Y.M. Liang, P.J. Wang, C.W. Li, S.S. Chen, Recovery of Cu(II) by chemical reduction using sodium dithionite, Chemosphere, 141 (2015) 183–188.
  7. G. Qiu, Q.Q. Xie, H.B. Liu, T.H. Chen, J.J. Xie, H.W. Li, Removal of Cu(II) from aqueous solutions using dolomite-palygorskite clay: Performance and mechanisms, Appl. Clay Sci., 118 (2015) 107–115.
  8. D.J. Ennigrou, M.B. Ali, M. Dhahbi, Copper and zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration, Desalination, 343 (2014) 82–87.
  9. S. Edebali, E. Pehlivan, Evaluation of chelate and cation exchange resins to remove copper ions, Powder Technol., 301 (2016) 520–525.
  10. R. Najam, S.M.A. Andrabi, Removal of Cu(II), Zn(II) and Cd(II) ions from aqueous solutions by adsorption on walnut shell-Equilibrium and thermodynamic studies: treatment of effluents from electroplating industry, Desal. Water Treat., 57 (2016) 27363–27373.
  11. J.X. Li, B.Q. Jiang, Y. Liu, C.Q. Qiu, J.J. Hu, G.R. Qian, W.S. Guo, H.H. Ngo, Preparation and adsorption properties of magnetic chitosan composite adsorbent for Cu2+ removal, J. Clean. Prod., 158 (2017) 51–58.
  12. G.F. Coelho, A.C. GonCalves, J.C. Novoa-Munoz, D. Fernandez-Calvino, M. Arias-Estevez, M.J. Fernandez-Sanjurjo, E. Alvarez-Rodriguez, A. Nunez-Delgado, Competitive and non-competitive cadmium, copper and lead sorption/desorption on wheat straw affecting sustainability in vineyards, J. Clean. Prod., 139 (2016) 1496–1503.
  13. S.S.G. Santos, M.B.B. Pereira, R.K.S. Almeida, A.G. Souza, M.G. Fonseca, M. Jaber, Silylation of leached-vermiculites following reaction with imidazole and copper sorption behavior, J. Hazard. Mater., 306 (2016) 406–418.
  14. J. Pena, J.R. Bargar, G. Sposito, Copper sorption by the edge surfaces of synthetic birnessite nanoparticles, Chem. Geol., 396 (2015) 196–207.
  15. S. Parlayici, E. Pehlivan, Removal of metals by Fe3O4 loaded activated carbon prepared from plum stone (Prunus nigra): Kinetics and modelling study, Powder Technol., 317 (2017) 23–30.
  16. I. Mobasherpour, E. Salahi, M. Pazouki, Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite, Desalination, 266 (2011) 142–148.
  17. W.I. Mortada, I.M.M. Kenawy, A.M. Abdelghany, A.M. Ismal, A.F. Donia, K.A. Nabieh, Determination of Cu2+, Zn2+ and Pb2+ in biological and food samples by FAAS after preconcentration with hydroxyapatite nanorods originated from eggshell, Mat. Sci. Eng. C-Mater., 52 (2015) 288–296.
  18. S. Saber-Samandari, S. Saber-Samandari, N. Nezafati, K. Yahya, Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads, J. Environ. Manage., 146 (2014) 481–490.
  19. D.X. Liao, W. Zheng, X.M. Li, Q. Yang, X. Yue, L. Guo, G.M. Zeng, Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste, J. Hazard. Mater., 177 (2010) 126–130.
  20. W.Q. Tang, R.Y. Zeng, Y.L. Feng, X.M. Li, W. Zhen, Removal of Cr(VI) from aqueous solution by nano-carbonate hydroxylapatite of different Ca/P molar ratios, Chem. Eng. J., 223 (2013) 340–346.
  21. L. Borum, O.C. Wilson, Surface modification of hydroxyapatite. Part II. Silica, Biomaterials, 24 (2003) 3681–3688.
  22. C. Zhang, L. Xiao, C. Liu, C. Duan, J. Yang, G.F. Wang, Ultrasonic chemistry fabrication of carbonated silicon-substituted hydroxyapatite nanopowder and its configuration representation, J. Chin. Ceram. Soc., 39 (2011) 1915–1921.
  23. C. Ding, D. Gong, P. Yu, J. Shao, M.E. Zhong, Removal of quinclorac herbicide from aqueous solution by chitosan/montmorillonite bionano composite, Desal. Water Treat., 57 (2016) 24970–24981
  24. M. Mohammadi, A. Ghaemi, M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati, Adsorption of cadmium (II) and nickel (II) on dolomite powder, Desal. Water Treat., 53 (2015) 149–157.
  25. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and Platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  26. H. Freundlich, Udber die adsorption in Loesunger, Z. Physik. Chem., 57 (1907) 385–470.
  27. Y. Liu, Y.J. Liu, Biosorption isotherms, kinetics and thermodynamics, Sep. Purif. Technol., 61 (2008) 229–242.
  28. K.A. Hing, P.A. Revell, N. Smith, T. Buckland, Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds, Biomaterials, 27 (2006) 5014–5026.
  29. L. Borum-Nicholas, O.C. Wilson, Surface modification of hydroxyapatite. Part I. Dodecyl alcohol, Biomaterials, 24 (2003) 3671–3679.
  30. X.L. Tang, X.F. Xiao, R.F. Liu, Structural characterization of silicon- substituted hydroxyapatite synthesized by a hydrothermal method, Mater. Lett., 59 (2005) 3841–3846.
  31. E. Zhang, C.M. Zou, G.N. Yu, Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process, Mat. Sci. Eng. C-Bio. S., 29 (2009) 298–305.
  32. W.T. Tsai, J.M. Yang, C.W. Lai, Y.H. Cheng, C.C. Lin, C.W. Yeh, Characterization and adsorption properties of eggshells and eggshell membrane, Biores. Technol., 97 (2006) 488–493.
  33. J. Su, H.G. Huang, X.Y. Jin, X.Q. Lu, Z.L. Chen, Synthesis, characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution, J. Hazard. Mater., 185 (2011) 63–70.
  34. G. Chen, K.J. Shah, L.Shi, P.C. Chiang, Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: Performance and mechanisms, Appl. Surf. Sci., 409 (2017) 296–305.
  35. M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-Fard, Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: Adsorption isotherm and kinetic studies, J. Ind. Eng. Chem., 20 (2014) 2193–2199.
  36. C. Appel, L.Q. Ma, R.D. Rhue, E. Kennelley, Point of zero charge detemination in soils and minerals via traditional methods and detection of electroacoustic mobility, Geoderma, 113 (2003) 77–93.
  37. S. Saber-Samandari, S. Saber-Samandari, M. Gazi, Cellulose-graft-polyacrylamide/hydroxyapatite composite hydrogel with possible application in removal of Cu (II) ions, React. Funct. Polym., 73 (2013) 1523–1530.
  38. A. Dabrowski, P. Podkoscielny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon - a critical review, Chemosphere, 58 (2005) 1049–1070.
  39. H. Ge, J. Wang, Ear-like poly (acrylic acid)-activated carbon nanocomposite: A highly efficient adsorbent for removal of Cd(II) from aqueous solutions, Chemosphere, 169 (2017) 443–449.
  40. G. Yang, L. Tang, X. Lei, G. Zeng, Y. Cai, X. Wei, Y. Zhou, S. Li, Y. Fang, Y. Zhang, Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan, Appl. Surf. Sci., 292 (2014) 710–716.
  41. L. Seid , D. Chouder, N. Maouche, I. Bakas, N. Barka, Removal of Cd(II) and Co(II) ions from aqueous solutions by polypyrrole particles: Kinetics, equilibrium and thermodynamics, J. Taiwan Inst. Chem. E., 45 (2014) 2969–2974.
  42. Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi, A. Montiel, Heavy metal removal from aqueous solutions by activated phosphate rock, J. Hazard. Mater., 156 (2008) 412–420.
  43. S. Sugiyama, H. Matsumoto, T. Ichii, H. Hayashi, Y. Hiraga, N. Shigemoto, Enhancement of lead-barium exchangeability of barium hydroxyapatite, J. Colloid. Interf. Sci., 238 (2001) 183–187.
  44. S. Meski, S. Ziani, H. Khireddine, Removal of lead ions by hydroxyapatite prepared from the egg shell, J. Chem. Eng. Data, 55 (2010) 3923–3928.
  45. Y.J. Lin, M.S. Wang, C.J. Liu, H.J. Huang, Defects, stress and abnormal shift of the (0 0 2) diffraction peak for Li-doped ZnO films, Appl. Surf. Sci., 256 (2010) 7623–7627.
  46. S. Shanmugam, B. Gopal, Copper substituted hydroxyapatite and fluorapatite: Synthesis, characterization and antimicrobial properties, Ceram. Int., 40 (2014) 15655–15662.
  47. T. Ishikawa, M. Wakamura, S. Kondo, Surface characterization of calcium hydroxylapatite by Fourier transform infrared spectroscopy, Langmuir, 5 (1989) 140–144.
  48. S. Hokkanen, A. Bhatnagar, E. Repo, S. Lou, M. Sillanpaa, Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution, Chem. Eng. J., 283 (2016) 445–452.
  49. G. Sposito, Distinguishing adsorption from surface precipitation, ACS Publications, 1986.
  50. J.D. Li, Y.B. Li, L. Zhang, Y. Zuo, Composition of calcium deficient Na-containing carbonate hydroxyapatite modified with Cu(II) and Zn(II) ions, Appl. Surf. Sci., 254 (2008) 2844–2850.
  51. R. Bazargan-Lari, H.R. Zafarani, M.E. Bahrololoom, A. Nemati, Removal of Cu(II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: Equilibrium, kinetic and thermodynamic studies, J. Taiwan Inst. Chem. E., 45 (2014) 1642–1648.
  52. L.M. Cui, L.H. Hu, X.Y. Guo, Y.K. Zhang, Y.G. Wang, Q. Wei, B. Du, Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesium hydroxyapatite/ferroferric oxide nano-composites with easy magnetic separation assistance, J. Mol. Liq., 198 (2014) 157–163.
  53. G. Huang, D. Wang, S. Ma, J. Chen, L. Jiang, P. Wang, A new, low-cost adsorbent: preparation, characterization, and adsorption behavior of Pb (II) and Cu (II), J. Colloid. Interf. Sci., 445 (2015) 294–302.
  54. N.B. Chang, C. Houmann, K.S. Lin, M. Wanielista, Fate and transport with material response characterization of green sorption media for copper removal via adsorption process, Chemosphere, 144 (2016) 1280–1289.
  55. A. Li, R. Lin, C. Lin, B. He, T. Zheng, L. Lu, Y. Cao, An environment- friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion, Carbohyd. Polym., 148 (2016) 272–280.