References

  1. R. Rahman, H. Ibrahium, Y.-T. Hung, Liquid radioactive wastes treatment: a review, Water, 3 (2011) 551–565.
  2. Y. Li, S. Wang, Q. Wang, M. Xing, Enhancement of fracture properties of polymer composites reinforced by carbon nanotubes: A molecular dynamics study, Carbon, 129 (2018) 504–509.
  3. M. Yurddaskal, E. Celik, Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite, Comp. Struct., 183 (2018) 381–388.
  4. Y. Zare, Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties, Composites Part A: Appl. Sci. Manufact., 84 (2016) 158–164.
  5. S. Mahdavi, M. Jalali, A. Afkhami, Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles, J. Nanopart. Res., 14 (2012) 846.
  6. X. Wang, W. Cai, S. Liu, G. Wang, Z. Wu, H. Zhao, ZnO hollow microspheres with exposed porous nanosheets surface: structurally enhanced adsorption towards heavy metal ions, Colloids Surfaces A: Physicochem. Eng. Asp., 422 (2013) 199–205.
  7. S. Singh, K. Barick, D. Bahadur, Novel and efficient three dimensional mesoporous ZnO nanoassemblies for envirnomental remediation, Int. J. Nanosci., 10 (2011) 1001–1005.
  8. K.Y. Kumar, H. Muralidhara, Y.A. Nayaka, J. Balasubramanyam, H. Hanumanthappa, Hierarchically assembled mesoporous ZnO nanorods for the removal of lead and cadmium by using differential pulse anodic stripping voltammetric method, Powder Technol., 239 (2013) 208–216.
  9. J.H. Lee, B.S. Kim, J.C. Lee, S. Park, Removal of Cu++ ions from aqueous Cu-EDTA solution using ZnO nanopowder, Materials Science Forum, Trans Tech Publ, 2005, pp. 510–513.
  10. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science, 292 (2001) 1897–1899.
  11. T.B. Massalski, J. Murray, Binary phase diagrams, ASM International, (1990) 1096.
  12. C. Xu, C.H. Woo, S. Shi, Formation of CuO nanowires on Cu foil, Chem. Phys. Lett., 399 (2004) 62–66.
  13. A.S. Khanna, Introduction to high temperature oxidation and corrosion, ASM international, 2002.
  14. M. Nalin, Y. Messaddeq, S. Ribeiro, M. Poulani, V. Briois, Photosensitivity in antimony based glasses, Paris Univ (France), 2001.
  15. N. Sahoo, K. Apparao, Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications, Appl. Phys. A: Mater. Sci. Process., 63 (1996) 195–202.
  16. K. Ozawa, Y. Sakka, M. Amano, Preparation and electrical conductivity of three types of antimonic acid films, J. Mater. Res., 13 (1998) 830–833.
  17. D. Dzimitrowicz, J. Goodenough, P. Wiseman, AC proton conduction in hydrous oxides, Mater. Res. Bull., 17 (1982) 971–979.
  18. P.R. Chang, J. Yu, X. Ma, Fabrication and characterization of Sb2O3/carboxymethyl cellulose sodium and the properties of plasticized starch composite films, Macromol. Mater. Eng., 294 (2009) 762–767.
  19. C. Xie, J. Hu, R. Wu, H. Xia, Structure transition comparison between the amorphous nanosize particles and coarsegrained polycrystalline of cobalt, Nanostruct. Mater., 11 (1999) 1061–1066.
  20. Z. Zhang, L. Guo, W. Wang, Synthesis and characterization of antimony oxide nanoparticles, J. Mater. Res., 16 (2001) 803–805.
  21. C. Ye, G. Wang, M. Kong, L. Zhang, Controlled synthesis of Sb2O3 nanoparticles, nanowires, and nanoribbons, J. Nanomater., 2006 (2006).
  22. J. Zhang, L. Gao, Synthesis and characterization of antimony- doped tin oxide (ATO) nanoparticles by a new hydrothermal method, Mater. Chem. Phys., 87 (2004) 10–13.
  23. X.Y. Chen, H.S. Huh, S.W. Lee, Hydrothermal synthesis of antimony oxychloride and oxide nanocrystals: Sb4O5Cl2, Sb8O11Cl2, and Sb2O3, J. Solid State Chem., 181 (2008) 2127–2132.
  24. Y. Liu, Y. Zhang, M. Zhang, W. Zhang, Y. Qian, L. Yang, C. Wang, Z. Chen, Preparation of nanocrystalline antimony oxide powders by use of γ-ray radiation—oxidization route, Mater. Sci. Eng.: B, 49 (1997) 42–45.
  25. A.K. Jha, K. Prasad, K. Prasad, A green low-cost biosynthesis of Sb2O3 nanoparticles, Biochem. Eng. J., 43 (2009) 303–306.
  26. R. Khalili, F. Shabanpour, H. Eisazadeh, Synthesis of polythiophene/Sb2O3 nanocomposite using sodium dodecylbenzenesulfonate for the removal of Pb(II), Adv. Polym. Technol., 33 (2014).
  27. J. Ramkumar, S. Chandramouleeswaran, B. Naidu, V. Sudarsan, Antimony phosphate nanoribbons: sorbents for uptake of uranyl ion, J. Radioanal. Nucl. Chem., 298 (2013) 1845–1855.
  28. N. Pandey, S. Shukla, N. Singh, Water purification by polymer nanocomposites: an overview, Nanocomposites, 3 (2017) 47–66.
  29. J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci., 479 (2015) 256–275.
  30. R. Ayoub, Adsorption behavior and kinetics of exchange of Co2+ and Eu3+ ions on polymer composite ion exchanger, Separ. Sci. Technol., 51 (2016) 229–236.
  31. P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 2 (1918) 98–100.
  32. J.-F. Li, Z.-L. Xu, H. Yang, L.-Y. Yu, M. Liu, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane, Appl. Surf. Sci., 255 (2009) 4725–4732.
  33. B.L. Rivas, B. Urbano, C. Muñoz, Metal ion sorption properties of water-insoluble resins based on sodium styrene sulfonate and different comonomers, Polym. Bull., 68 (2012) 1537–1549.
  34. Z. Deng, F. Tang, D. Chen, X. Meng, L. Cao, B. Zou, A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections, J. Phys. Chem. B, 110 (2006) 18225–18230.
  35. M. Nalin, Y. Messaddeq, S. Ribeiro, M. Poulain, V. Briois, G. Brunklaus, C. Rosenhahn, B. Mosel, H. Eckert, Structural organization and thermal properties of the Sb2O3–SbPO4 glass system, J. Mater. Chem., 14 (2004) 3398–3405.
  36. Y. Wei, H.-Q. Chu, B.-Z. Dong, X. Li, S.-J. Xia, Z.-M. Qiang, Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance, Desalination, 272 (2011) 90–97.
  37. Y. Agrawal, A. Shashimohan, A. Biswas, Studies on antimony oxides: Part I: Thermal analysis of Sb2O3 in air, nitrogen and argon, J. Thermal Anal. Calorim., 7 (1975) 635–641.
  38. M.S. Lashkenari, B. Davodi, H. Eisazadeh, Removal of arsenic from aqueous solution using polyaniline/rice husk nanocomposite, Korean J. Chem. Eng., 28 (2011) 1532–1538.