References

  1. J.A. Rintala, J.A. Puhakka, Anaerobic treatment in pulp-and-paper-mill waste management: a review, Bioresour. Technol., 47 (1994) 1–18.
  2. M. Ali, T. Sreekrishnan, Aquatic toxicity from pulp and paper mill effluents: a review, Adv. Environ. Res., 5 (2001) 175–196.
  3. G. Thompson, J. Swain, M. Kay, C. Forster, The treatment of pulp and paper mill effluent: a review, Bioresour. Technol., 77 (2001) 275–286.
  4. T.Y. Wu, N. Guo, C.Y. Teh, J.X.W. Hay, Advances in ultrasound technology for environmental remediation, Springer Science & Business Media, 2012.
  5. A. Latorre, A. Malmqvist, S. Lacorte, T. Welander, D. Barceló, Evaluation of the treatment efficiencies of paper mill whitewaters in terms of organic composition and toxicity, Environ. Pollut., 147 (2007) 648–655.
  6. M. Kamali, Z. Khodaparast, Review on recent developments on pulp and paper mill wastewater treatment, Ecotoxicol. Environ. Safety, 114 (2015) 326–342.
  7. A. Helble, W. Schlayer, P.-A. Liechti, R. Jenny, C.H. Möbius, Advanced effluent treatment in the pulp and paper industry with a combined process of ozonation and fixed bed biofilm reactors, Water Sci. Technol., 40 (1999) 343–350.
  8. E. Chamarro, A. Marco, S. Esplugas, Use of Fenton reagent to improve organic chemical biodegradability, Water Res., 35 (2001) 1047–1051.
  9. V.C. Srivastava, I.D. Mall, I.M. Mishra, Treatment of pulp and paper mill wastewaters with poly aluminium chloride and bagasse fly ash, Colloids Surfaces A: Physicochem. Eng. Asp., 260 (2005) 17–28.
  10. F. Renault, B. Sancey, J. Charles, N. Morin-Crini, P.-M. Badot, P. Winterton, G. Crini, Chitosan flocculation of cardboard-mill secondary biological wastewater, Chem. Eng. J., 155 (2009) 775–783.
  11. S. Wong, T. Teng, A. Ahmad, A. Zuhairi, G. Najafpour, Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation, J. Hazard. Mater., 135 (2006) 378–388.
  12. V. Patale, J. Pandya, Mucilage extract of Coccinia indica fruit as coagulant-flocculent for turbid water treatment, Asian J. Plant Sci. Res., 2 (2012) 442–445.
  13. G. Vijayaraghavan, T. Sivakumar, A. Vimal Kumar, Application of plant based coagulants for waste water treatment, Int. J. Adv. Eng. Res. Stud., 1 (2011) 88–92.
  14. T. Crouzier, T. Boudou, C. Picart, Polysaccharide-based polyelectrolyte multilayers, Current Opinion Coll. Interf. Sci., 15 (2010) 417–426.
  15. R. Sanghi, B. Bhattacharya, A. Dixit, V. Singh, Ipomoea dasysperma seed gum: An effective natural coagulant for the decolorization of textile dye solutions, J. Environ. Manage., 81 (2006) 36–41.
  16. M. Šćiban, M. Klašnja, M. Antov, B. Škrbić, Removal of water turbidity by natural coagulants obtained from chestnut and acorn, Bioresour. Technol., 100 (2009) 6639–6643.
  17. S. Razavi, S.A. Mortazavi, L. Matia-Merino, S.H. Hosseini-Parvar, A. Motamedzadegan, E. Khanipour, Optimisation study of gum extraction from basil seeds (Ocimum basilicum L.), Int. J. Food Sci. Technol., 44 (2009) 1755–1762.
  18. S. Hosseini-Parvar, L. Matia-Merino, K. Goh, S.M.A. Razavi, S.A. Mortazavi, Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature, J. Food Eng., 101 (2010) 236–243.
  19. J. Melo, S. D’souza, Removal of chromium by mucilaginous seeds of Ocimum basilicum, Bioresour. Technol., 92 (2004) 151–155.
  20. D. Chakraborty, S. Maji, A. Bandyopadhyay, S. Basu, Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum, Bioresour. Technol., 98 (2007) 2949–2952.
  21. A. Gupte, M. Karjikar, J. Nair, Biosorption of copper using mucilaginous seeds of Ocimum basilicum, Acta Biol. Indica, 1 (2012) 113–119.
  22. M.A. Rasool, B. Tavakoli, N. Chaibakhsh, A.R. Pendashteh, A.S. Mirroshandel, Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site, Ecol. Eng., 90 (2016) 431–437.
  23. S. Shamsnejati, N. Chaibakhsh, A.R. Pendashteh, S. Hayeripour, Mucilaginous seed of Ocimum basilicum as a natural coagulant for textile wastewater treatment, Ind. Crops Products, 69 (2015) 40–47.
  24. J. Masides, J. Soley, J. Mata-Alvarez, A feasibility study of alum recovery in wastewater treatment plants, Water Res., 22 (1988) 399–405.
  25. B. Jimenez, M. Martinez, M. Vaca, Alum recovery and wastewater sludge stabilization with sulfuric acid: Mixing aspects, in: International Water Association Specialty Conference Proceedings Moving Forward Wastewater Biosolids Sustainability: Technical, Management and Public Synergy, International Water Association, Greater Moncton Sewerage Commission, Moncton, New Brunswick, Canada, 2007, pp. 543–550.
  26. C.-Y. Yin, Emerging usage of plant-based coagulants for water and wastewater treatment, Process Biochem., 45 (2010) 1437–1444.
  27. F. Fan, H. Zhou, H. Husain, Use of chemical coagulants to control fouling potential for wastewater membrane bioreactor processes, Water Environ. Res., 79 (2007) 952–957.
  28. C.M. Anderson-Cook, C.M. Borror, D.C. Montgomery, Response surface design evaluation and comparison, J. Stat. Plan. Inference, 139 (2009) 629–641.
  29. J.-P. Wang, Y.-Z. Chen, X.-W. Ge, H.-Q. Yu, Optimization of coagulation–flocculation process for a paper-recycling wastewater treatment using response surface methodology, Colloids Surfaces A: Physicochem. Eng. Asp., 302 (2007) 204–210.
  30. K.S. dos Santos, H.S. Silva, E.I. Ferreira, R.E. Bruns, 3 2 Factorial design and response surface analysis optimization of N-carboxybutylchitosan synthesis, Carbohyd. Polym., 59 (2005) 37–42.
  31. S. Ghafari, H.A. Aziz, M.H. Isa, A.A. Zinatizadeh, Application of response surface methodology (RSM) to optimize coagulation– flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum, J. Hazard. Mater., 163 (2009) 650–656.
  32. W.E. Federation, A. Association, Standard methods for the examination of water and wastewater, American Public Health Association (APHA): Washington, DC, USA, (2005).
  33. N. Chaibakhsh, N. Ahmadi, M.A. Zanjanchi, Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater, Ind. Crops Products, 61 (2014) 169–175.
  34. M. Demirel, B. Kayan, Application of response surface methodology and central composite design for the optimization of textile dye degradation by wet air oxidation, Int. J. Ind. Chem., 3 (2012) 24.
  35. T.U. Nwabueze, Review article: Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food systems, Int. J. Food Sci. Technol., 45 (2010) 1768–1776.
  36. J. Beltran-Heredia, J. Sanchez-Martin, A. Delgado-Regalado, Removal of carmine indigo dye with Moringa oleifera seed extract, Ind. Eng. Chem. Res., 48 (2009) 6512–6520.
  37. J. Edzwald, J. Bottero, K. Ives, R. Klute, Particle alteration and particle production processes, Treatment Process Selection for Particle Removal. Cooperative Research Rept, 1998.
  38. X. Duan, T. Liu, W. Duan, H. Hu, Adsorption and coagulation tertiary treatment of pulp and paper mills wastewater, in: Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, IEEE, 2010, pp. 1–4.
  39. M. Aguilar, J. Saez, M. Llorens, A. Soler, J. Ortuno, Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation–flocculation using ferric sulphate as coagulant and different coagulant aids, Water Res., 37 (2003) 2233–2241.
  40. A. Ahmad, S. Wong, T. Teng, A. Zuhairi, Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater, Chem. Eng. J., 137 (2008) 510–517.
  41. M. Petala, V. Tsiridis, P. Samaras, A. Zouboulis, G. Sakellaropoulos, Wastewater reclamation by advanced treatment of secondary effluents, Desalination, 195 (2006) 109–118.
  42. A.C. Rodrigues, M. Boroski, N.S. Shimada, J.C. Garcia, J. Nozaki, N. Hioka, Treatment of paper pulp and paper mill wastewater by coagulation–flocculation followed by heterogeneous photocatalysis, J. Photochem. Photobiol. A: Chemistry, 194 (2008) 1–10.
  43. N. Birjandi, H. Younesi, N. Bahramifar, Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology, Appl. Water Sci., 6 (2016) 339–348.
  44. N. Birjandi, H. Younesi, N. Bahramifar, S. Ghafari, A.A. Zinatizadeh, S. Sethupathi, Optimization of coagulation-flocculation treatment on paper-recycling wastewater: Application of response surface methodology, J. Environ. Sci. Health, Part A, 48 (2013) 1573–1582.
  45. J.-P. Wang, Y.-Z. Chen, Y. Wang, S.-J. Yuan, H.-Q. Yu, Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology, Water Res., 45 (2011) 5633–5640.
  46. T. Freitas, V. Oliveira, M. De Souza, H. Geraldino, V. Almeida, S. Fávaro, J. Garcia, Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant, Ind. Crops Products, 76 (2015) 538–544.
  47. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Wiley Online Library, 1986.
  48. P. Makreski, G. Jovanovski, S. Dimitrovska, Minerals from Macedonia: XIV. Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy, Vibrat. Spectroscopy, 39 (2005) 229–239.
  49. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons, 2004.
  50. A. Rafe, S.M. Razavi, Effect of thermal treatment on chemical structure of β-lactoglobulin and basil seed gum mixture at different states by ATR-FTIR spectroscopy, Int. J. Food Prop., 18 (2015) 2652–2664.
  51. W. Subramonian, T.Y. Wu, S.-P. Chai, A comprehensive study on coagulant performance and floc characterization of natural Cassia obtusifolia seed gum in treatment of raw pulp and paper mill effluent, Ind. Crops Products, 61 (2014) 317–324.
  52. S. Cosa, A.M. Ugbenyen, L.V. Mabinya, K. Rumbold, A.I. Okoh, Characterization and flocculation efficiency of a bioflocculant produced by a marine Halobacillus, Environ. Technol., 34 (2013) 2671–2679.
  53. W. Subramonian, T.Y. Wu, S.-P. Chai, An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum, Ind. Crops Products, 70 (2015) 107–115.