References

  1. E. Bilgin Simsek, B. Aytas, D. Duranoglu, U. Beker, A.W. Trochimczuk, A comparative study of 2-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol adsorption onto polymeric, commercial, and carbonaceous adsorbents, Desal. Water Treat., 57 (2016) 9940–9956.
  2. K. Kuśmierek, M. Szala, A. Świątkowski, Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis, J. Taiwan Inst. Chem. Eng., 63 (2016) 371–378.
  3. C.-H. Lin, S.-K. Tseng, Electrochemically reductive dechlorination of pentachlorophenol using a high overpotential zinc cathode, Chemosphere, 39 (1999) 2375–2389.
  4. Z. Jin, S.H. Zhang, X.G. Jian, Removal of 2, 4-dichlorophenol from wasterwater by vacuum membrane distillation using hydrophobic PPESK hollow hiber membrane, Chin. Chem. Lett., 18 (2007) 1543–1547.
  5. S. Bhattacharya, R. Banerjee, Laccase mediated biodegradation of 2, 4-dichlorophenol using response surface methodology, Chemosphere, 73 (2008) 81–85.
  6. M. Czaplicka, Sources and transformations of chlorophenols in the natural environment, Sci. Total Environ., 322 (2004) 21–39.
  7. E.O. Igbinosa, E.E. Odjadjare, V.N. Chigor, I.H. Igbinosa, A.O. Emoghene, F.O. Ekhaise, N.O. Igiehon, O.G. Idemudia, Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective, Sci. World J., 2013 (2013).
  8. Q.-S. Liu, T. Zheng, P. Wang, J.-P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J., 157 (2010) 348–356.
  9. N. Mubarak, J. Sahu, E. Abdullah, N. Jayakumar, P. Ganesan, Microwave assisted multiwall carbon nanotubes enhancing Cd (II) adsorption capacity in aqueous media, J. Ind. Eng. Chem., 24 (2015) 24–33.
  10. V.K. Gupta, A. Imran, Adsorbents for water treatment: development of low-cost alternatives to carbon, Encycl. Surf. Colloid Sci., 2004 Update Supplement, 5 (2004) 1.
  11. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 33 (1999) 2469–2479.
  12. H.M. Alayan, M.A. Alsaadi, R. Das, A. Abo-Hamad, R.K. Ibrahim, M.K. AlOmar, M.A. Hashim, The formation of hybrid carbon nanomaterial by chemical vapor deposition: an efficient adsorbent for enhanced adsorptive removal of methylene blue from aqueous solution, Water Sci. Technol., (2018) wst2018211.
  13. K. Kusmierek, M. Sankowska, A. Swiatkowski, Adsorption of dichlorophenols from aqueous solutions onto multi-walled carbon nanotubes, Przem. Chem., 92 (2013) 1257–1260.
  14. A.A.M. Daifullah, B.S. Girgis, Removal of some substituted phenols by activated carbon obtained from agricultural waste, Water Res., 32 (1998) 1169–1177.
  15. M.-W. Jung, K.-H. Ahn, Y. Lee, K.-P. Kim, J.-S. Rhee, J. Tae Park, K.-J. Paeng, Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC), Microchem. J., 70 (2001) 123–131.
  16. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 147 (2007) 381–394.
  17. X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: a review, Chem. Eng. J., 170 (2011) 395–410.
  18. R. Thines, N. Mubarak, S. Nizamuddin, J. Sahu, E. Abdullah, P. Ganesan, Application potential of carbon nanomaterials in water and wastewater treatment: A review, J. Taiwan Inst. Chem. Eng., 72 (2017) 116–133.
  19. N. Mubarak, J. Sahu, E. Abdullah, N. Jayakumar, Removal of heavy metals from wastewater using carbon nanotubes, Sep. Purif. Rev., 43 (2014) 311–338.
  20. N. Mubarak, J. Sahu, E. Abdullah, N. Jayakumar, P. Ganesan, Novel microwave-assisted multiwall carbon nanotubes enhancing Cu (II) adsorption capacity in water, J. Taiwan Inst. Chem. Eng., 53 (2015) 140–152.
  21. N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique, J. Environ. Sci., 45 (2016) 143–155.
  22. C. Chen, X. Wang, Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes, Ind. Eng. Chem. Res., 45 (2006) 9144–9149.
  23. C. Luo, R. Wei, D. Guo, S. Zhang, S. Yan, Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions, Chem. Eng. J., 225 (2013) 406–415.
  24. M. Ruthiraan, N.M. Mubarak, R.K. Thines, E.C. Abdullah, J.N. Sahu, N.S. Jayakumar, P. Ganesan, Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater, Korean J. Chem. Eng., 32 (2015) 446–457.
  25. R. Thines, N. Mubarak, M. Ruthiraan, E. Abdullah, J. Sahu, N. Jayakumara, P. Ganesan, N. Sajuni, Adsorption isotherm and thermodynamics studies of Zn (II) on functionalized and non-functionalized carbon nanotubes, Adv. Sci., Eng. Med., 6 (2014) 974–984.
  26. M.H. Dehghani, M. Mostofi, M. Alimohammadi, G. McKay, K. Yetilmezsoy, A.B. Albadarin, B. Heibati, M. AlGhouti, N.M. Mubarak, J.N. Sahu, High-performance removal of toxic phenol by single-walled and multi-walled carbon nanotubes: Kinetics, adsorption, mechanism and optimization studies, J. Ind. Eng. Chem., 35 (2016) 63–74.
  27. X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia, Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes, Chem. Phys. Lett., 376 (2003) 154–158.
  28. G.-C. Chen, X.-Q. Shan, Y.-S. Wang, B. Wen, Z.-G. Pei, Y.-N. Xie, T. Liu, J.J. Pignatello, Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II), Water Res., 43 (2009) 2409–2418.
  29. M. Abdel Salam, R.C. Burk, Thermodynamics of pentachlorophenol adsorption from aqueous solutions by oxidized multiwalled carbon nanotubes, Appl. Surf. Sci., 255 (2008) 1975–1981.
  30. C.-H. Wu, Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 144 (2007) 93–100.
  31. J. Xu, X. Lv, J. Li, Y. Li, L. Shen, H. Zhou, X. Xu, Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support, J. Hazard. Mater., 225–226 (2012) 36–45.
  32. M.M. Aljumaily, M.A. Alsaadi, R. Das, S.B.A. Hamid, N.A. Hashim, M.K. AlOmar, H.M. Alayan, M. Novikov, Q.F. Alsalhy, M.A. Hashim, Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition, Sci. Rep., 8 (2018) 2778.
  33. R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, A. Hayyan, S. Ibrahim, Environmental application of nanotechnology: air, soil, and water, Environ. Sci. Pollut. Res., (2016) 1–35.
  34. B. Yu, F. Zhou, G. Liu, Y. Liang, W.T. Huck, W. Liu, The electrolyte switchable solubility of multi-walled carbon nanotube/ionic liquid (MWCNT/IL) hybrids, Chem. Commun., (2006) 2356–2358.
  35. A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, P. Petit, Spontaneous dissolution of a single-wall carbon nanotube salt, J. Am. Chem. Soc., 127 (2005) 8–9.
  36. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon, 46 (2008) 833–840.
  37. N.M. Mubarak, R.F. Alicia, E.C. Abdullah, J.N. Sahu, A.B.A. Haslija, J. Tan, Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar, J. Environ. Chem. Eng., 1 (2013) 486–495.
  38. E. Durand, J. Lecomte, P. Villeneuve, Deep eutectic solvents: Synthesis, application, and focus on lipase-catalyzed reactions, Eur. J. Lipid Sci. Technol., 115 (2013) 379–385.
  39. B. Tang, K. Row, Recent developments in deep eutectic solvents in chemical sciences, Monatsh Chem, 144 (2013) 1427–1454.
  40. Y.R. Lee, K.H. Row, Comparison of ionic liquids and deep eutectic solvents as additives for the ultrasonic extraction of astaxanthin from marine plants, Ind. Eng. Chem.
  41. A. Abo-Hamad, M. Hayyan, M.A. AlSaadi, M.A. Hashim, Potential applications of deep eutectic solvents in nanotechnology, Chem. Eng. J., 273 (2015) 551–567.
  42. P.D. de María, Z. Maugeri, Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents, Curr. Opin. Chem. Biol., 15 (2011) 220–225.
  43. R.K. Ibrahim, M. Hayyan, M.A. Alsaadi, S. Ibrahim, A. Hayyan, M.A. Hashim, Diethylene glycol based deep eutectic solvents and their physical properties, Stud. Univ. Babes-Bolyai, Chem., 62 (2017).
  44. V.S. Raghuwanshi, M. Ochmann, A. Hoell, F. Polzer, K. Rademann, Deep eutectic solvents for the self-assembly of gold nanoparticles: A SAXS, UV–Vis, and TEM investigation, Langmuir, 30 (2014) 6038–6046.
  45. C. Gu, Y. Mai, J. Zhou, J. Tu, SnO2 nanocrystallite: novel synthetic route from deep eutectic solvent and lithium storage performance, Funct. Mater. Lett., 4 (2011) 377–381.
  46. M. Hayyan, A. Abo-Hamad, M.A. AlSaadi, M.A. Hashim, Functionalization of graphene using deep eutectic solvents, Nanoscale Res. Lett., 10 (2015) 1.
  47. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M.A. Hashim, Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water, Appl. Surf. Sci., 389 (2016) 216–226.
  48. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M. Ibrahim, M.A. Hashim, Allyl triphenyl phosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water, Chemosphere, 167 (2017) 44–52.
  49. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, R.K. Ibrahim, M.A. Hashim, Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes, J. Mol. Liq., (2016).
  50. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97 (2006) 187401.
  51. Y. Ying, R.K. Saini, F. Liang, A.K. Sadana, W. Billups, Functionalization of carbon nanotubes by free radicals, Org. Lett., 5 (2003) 1471–1473.
  52. J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour, Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode, J. Am. Chem. Soc., 123 (2001) 6536–6542.
  53. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nanoletters, 10 (2010) 751–758.
  54. A. Jorio, M. Pimenta, A. Souza Filho, R. Saito, G. Dresselhaus, M. Dresselhaus, Characterizing carbon nanotube samples with resonance Raman scattering, New J. Phys., 5 (2003) 139.
  55. C. Tsai, C. Chen, Characterization of bias-controlled carbon nanotubes, Diamond Relat. Mater., 12 (2003) 1615–1620.
  56. C. Lu, H. Bai, B. Wu, F. Su, J.F. Hwang, Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites, Energy Fuels, 22 (2008) 3050–3056.
  57. J. Coates, Interpretation of infrared spectra, a practical approach, in: Encyclopedia of Analytical Chemistry, 2000.
  58. A.K. Das, S. Maiti, B. Khatua, High performance electrode material prepared through in-situ polymerization of aniline in the presence of zinc acetate and graphene nanoplatelets for supercapacitor application, J. Electroanal. Chem., 739 (2015) 10–19.
  59. F.M. Machado, C.P. Bergmann, T.H. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon, J. Hazard. Mater., 192 (2011) 1122–1131.
  60. S. Maiti, B.B. Khatua, Electrochemical and electrical performances of cobalt chloride (CoCl2) doped polyaniline (PANI)/ graphene nanoplate (GNP) composite, RSC Adv., 3 (2013) 12874–12885.
  61. G.D. Sheng, D.D. Shao, X.M. Ren, X.Q. Wang, J.X. Li, Y.X. Chen, X.K. Wang, Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes, J. Hazard. Mater., 178 (2010) 505–516.
  62. B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, H. Barbara Stuart, Wiley, 2004, 224 p.
  63. P. Hou, C. Liu, Y. Tong, S. Xu, M. Liu, H. Cheng, Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method, J. Mater. Res., 16 (2001) 2526–2529.
  64. A. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. Huffman, F. Rodriguez-Macias, P. Boul, A. Lu, D. Heymann, D. Colbert, Largescale purification of single-wall carbon nanotubes: process, product, and characterization, Appl. Phys. A: Mater. Sci. Process., 67 (1998) 29–37.
  65. P. Ajayan, T. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Opening carbon nanotubes with oxygen and implications for filling, Nature, 362 (1993) 522–525.
  66. C. Lu, H. Chiu, Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution, Chem. Eng. J., 139 (2008) 462–468.
  67. J. Fan, Z. Shi, M. Tian, J. Wang, J. Yin, Unzipped multiwalled carbon nanotube oxide/multiwalled carbon nanotube hybrids for polymer reinforcement, ACS Appl. Mater. Interfaces, 4 (2012) 5956–5965.
  68. O.V. Kharissova, B.I. Kharisov, E.G. de Casas Ortiz, Dispersion of carbon nanotubes in water and non-aqueous solvents, RSC Adv., 3 (2013) 24812–24852.
  69. V.K. Gupta, I. Ali, V.K. Saini, Adsorption of 2, 4-D and carbofuran pesticides using fertilizer and steel industry wastes, J. Colloid Interface Sci., 299 (2006) 556–563.
  70. J.-W. Ma, H. Wang, F.-Y. Wang, Z.-H. Huang, Adsorption of 2, 4-dichlorophenol from aqueous solution by a new low-cost adsorbent–activated bamboo charcoal, Sep. Sci. Technol., 45 (2010) 2329–2336.
  71. R. Darvishi Cheshmeh Soltani, A. Khataee, H. Godini, M. Safari, M. Ghanadzadeh, M. Rajaei, Response surface methodological evaluation of the adsorption of textile dye onto biosilica/ alginate nanobiocomposite: thermodynamic, kinetic, and isotherm studies, Desal. Water Treat., 56 (2015) 1389–1402.
  72. S. Lagergren, About the Theory of So-Called Adsorption of Soluble Substances, 1898.
  73. D.K. Mahmoud, M.A.M. Salleh, W.A.W.A. Karim, A. Idris, Z.Z. Abidin, Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies, Chem. Eng. J., 181 (2012) 449–457.
  74. S. Largergren, Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  75. F.W. Shaarani, B.H. Hameed, Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol, Chem. Eng. J., 169 (2011) 180–185.
  76. Y.-S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  77. J.-P. Wang, H.-M. Feng, H.-Q. Yu, Analysis of adsorption characteristics of 2, 4-dichlorophenol from aqueous solutions by activated carbon fiber, J. Hazard. Mater., 144 (2007) 200–207.
  78. L. Wang, J. Zhang, R. Zhao, C. Zhang, C. Li, Y. Li, Adsorption of 2,4-dichlorophenol on Mn-modified activated carbon prepared from Polygonum orientale Linn, Desalination, 266 (2011) 175–181.
  79. F.A. Pavan, S.L. Dias, E.C. Lima, E.V. Benvenutti, Removal of Congo red from aqueous solution by anilinepropylsilica xerogel, Dyes Pigm., 76 (2008) 64–69.
  80. V. Vimonses, S. Lei, B. Jin, C.W. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J., 148 (2009) 354–364.
  81. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  82. G. Mckay, M. El Geundi, M. Nassar, Equilibrium studies during the removal of dyestuffs from aqueous solutions using bagasse pith, Water Res., 21 (1987) 1513–1520.
  83. Z. Zhang, Z. Zhang, Y. Fernández, J. Menéndez, H. Niu, J. Peng, L. Zhang, S. Guo, Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis, Appl. Surf. Sci., 256 (2010) 2569–2576.
  84. K. Hall, L. Eagleton, A. Acrivos, T. Vermeulen, Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant- pattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  85. F. Haghseresht, G. Lu, Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents, Energy Fuels, 12 (1998) 1100–1107.
  86. B.H. Hameed, A.A. Ahmad, N. Aziz, Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash, Chem. Eng. J., 133 (2007) 195–203.
  87. C. Namasivayam, R. Jeyakumar, R. Yamuna, Dye removal from wastewater by adsorption on ‘waste’Fe (III)/Cr (III) hydroxide, Waste Manage., 14 (1994) 643–648.
  88. A.S. Özcan, B. Erdem, A. Özcan, Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite, Colloids Surf., A, 266 (2005) 73–81.
  89. B. Hameed, J. Salman, A. Ahmad, Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater., 163 (2009) 121–126.
  90. F. Shaarani, B. Hameed, Batch adsorption of 2, 4-dichlorophenol onto activated carbon derived from agricultural waste, Desalination, 255 (2010) 159–164.
  91. J. Xu, X. Liu, G.V. Lowry, Z. Cao, H. Zhao, J.L. Zhou, X. Xu, Dechlorination mechanism of 2, 4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol, ACS Appl. Mater. Interf., 8 (2016) 7333–7342.
  92. K. Kuśmierek, M. Szala, A. Świątkowski, Adsorption of 2, 4-dichlorophenol and 2, 4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis, J. Taiwan Inst. Chem. Eng., 63 (2016) 371–378.
  93. J. Salman, V. Njoku, B. Hameed, Adsorption of pesticides from aqueous solution onto banana stalk activated carbon, Chem. Eng. J., 174 (2011) 41–48.
  94. C. Namasivayam, D. Kavitha, Adsorptive removal of 2, 4-dichlorophenol from aqueous solution by low-cost carbon from an agricultural solid waste: coconut coir pith, Separ. Sci. Technol., 39 (2005) 1407–1425.
  95. M. Sathishkumar, A. Binupriya, D. Kavitha, S. Yun, Kinetic and isothermal studies on liquid-phase adsorption of 2, 4-dichlorophenol by palm pith carbon, Bioresour. Technol., 98 (2007) 866–873.
  96. M.-W. Jung, K.-H. Ahn, Y. Lee, K.-P. Kim, J.-S. Rhee, J.T. Park, K.-J. Paeng, Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC), Microchem. J., 70 (2001) 123–131.
  97. A. Demirak, Ö. Dalman, E. Tilkan, D. Yıldız, E. Yavuz, C. Gökçe, Biosorption of 2, 4 dichlorophenol (2, 4-DCP) onto Posidonia oceanica (L.) seagrass in a batch system: Equilibrium and kinetic modeling, Microchem. J., 99 (2011) 97–102.
  98. S.K. Nadavala, K. Swayampakula, V.M. Boddu, K. Abburi, Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads, J. Hazard. Mater., 162 (2009) 482–489.
  99. J.-P. Wang, Y.-Z. Chen, H.-M. Feng, S.-J. Zhang, H.-Q. Yu, Removal of 2, 4-dichlorophenol from aqueous solution by static-air-activated carbon fibers, J. Colloid Interface Sci., 313 (2007) 80–85.
  100. E. Luboch, E. Wagner-Wysiecka, Z. Poleska-Muchlado, V.C. Kravtsov, Synthesis and properties of azobenzocrown ethers with π-electron donor, or π-electron donor and π-electron acceptor group(s) on benzene ring(s), Tetrahedron, 61 (2005) 10738–10747.