References

  1. B. Adinew, Textile effluent treatment and decolorization techniques – a review, Chemistry: Bulg. J. Sci. Edu., 21 (2012) 434–456.
  2. E. Kusvuran, O. Gulnaz, S. Irmak, O.M. Atanur, H.I. Yavuz, O. Erbatur, Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution, J. Hazard. Mater., 109 (2004) 85–93.
  3. S. Meric, D. Kaptan, T. Olmez, Color and COD removal from wastewater containing Reactive Black using Fenton’s oxidation process, Chemosphere, 54 (2004) 435–441.
  4. S. Meriç, G. Lofrano, V. Belgiorno, Treatment of Reactive dyes and textile finishing wastewater using fenton’s oxidation for reuse, Int. J. Environ. Pollut., 23 (2005) 248–258.
  5. A. Verma, A. Kaur Hura, D. Dixit, Sequential photo-Fenton and sono-photo-Fenton degradation studies of Reactive Black 5 (RB5), Desal. Water Treat., 56 (2015) 677–683.
  6. F. Duarte, V. Morais, F.J. Maldonado-Hódar, L.M. Madeira, Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst, Chem. Eng. J., 232 (2013) 34–41.
  7. F. Trachsel, Design of a Microreactor for Reactions Using Supercritical Fluids as the Reaction Solvent, Institute of Process Engineering, ETH Zurich, ETH Zurich, 2008.
  8. T. Dietrich, Microchemical Engineering in Practice, Wiley, Hoboken, New Jersy, 2009, 174–175.
  9. G. Donati, R. Paludetto, Scale up of chemical reactors, Catal. Today, 34 (1997) 483–533.
  10. R. Jevtic, M. AlDahhan, M.P. Dudukovic, Review of Microreactors, 2007.
  11. M. Rahimi, B. Aghel, M. Sadeghi, M. Ahmadi, Using Y-shaped microreactor for continuous decolorization of an Azo dye, Desal. Water Treat., 52 (2014) 5513–5519.
  12. S. Papić, M. Mužic, N. Koprivanac, I. Peternel, M. Deanović, Decolorization of the anthraquinone dye C. I. Reactive blue 2 by Fenton oxidation; Statistical experimental design, Chem. Biochem. Eng. Quart., 24 (2010) 9–16.
  13. U. Akay, E.A. Demirtas, Degradation of burazol blue ED by heterogeneous fenton process: simultaneous optimization by central composite design, Desal. Water Treat., 56 (2015) 3346– 3356.
  14. Y. Shen, Q. Xu, J. Shi, M. Li, Y. Zhang, Optimization and mechanism study of C.I. acid blue 25 wastewater degradation by ozone/fenton oxidation process: Response surface methodology, intermediate products and degradation pathway, Desal. Water Treat., 65 (2017) 313–326.
  15. H. Bruus, Theoretical Microfluidics, 3rd ed., Oxford University Press, Oxford, UK, 2008.
  16. K. Miyabe, R. Isogai, Estimation of molecular diffusivity in liquid phase systems on the basis of the absolute rate theory, Anal. Sci., 29 (2013) 467–472.
  17. J. Shi, Z. Ai, L. Zhang, Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles, Water Res., 59 (2014) 145–153.
  18. F. Torrades, J. García-Montaño, Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions, Dyes and Pigments, 100 (2014) 184–189.
  19. Ö. Gökkuş, F. Çoşkun, M. Kocaoğlu, Y.Ş. Yıldız, Determination of optimum conditions for color and COD removal of Reactive Blue 19 by Fenton oxidation process, Desal. Water Treat., 52 (2014) 6156–6165.
  20. J. Saien, A.R. Soleymani, H. Bayat, Modeling Fentonic advanced oxidation process decolorization of Direct Red 16 using artificial neural network technique, Desal. Water Treat., 40 (2012) 174–182.
  21. K. Sehested, O.L. Rasmussen, H. Fricke, Rate constants of OH with HO2, O2, and H2O2+ from hydrogen peroxide formation in pulse irradiated oxygenated water, J. Phys. Chem., 72 (1968) 626–631.
  22. S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal, G. Sekaran, Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes, Desalination, 281 (2011) 438–445.
  23. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: An overview, Desalination, 299 (2012) 1–15.
  24. A. Mahmood, S. Ali, H. Saleem, T. Hussain, Optimization for degradation of commercial Reactive Yellow Dye 145 through Fenton’s reagent, Asian J. Chem., 23 (2011) 3875–3878.
  25. M. Muruganandham, M. Swaminathan, Advanced oxidative decolourisation of Reactive Yellow 14 azo dye by UV/TiO2, UV/H2O2, UV/H2O2/Fe2+ processes—a comparative study, Sep. Purif. Technol., 48 (2006) 297–303.
  26. M. Siddique, R. Farooq, G. Price, Synergistic effects of combining ultrasound with the Fenton process in the degradation of Reactive Blue 19, Ultrason. Sonochem., 21 (2014) 1206–1212.
  27. S. Papić, D. Vujević, N. Koprivanac, D. Šinko, Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes, J. Hazard. Mater., 164 (2009) 1137–1145.
  28. M. Nimafar, V. Viktorov, M. Martinelli, Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels, Chem. Eng. Sci., 76 (2012) 37–44.
  29. Y. Fang, Y. Ye, R. Shen, P. Zhu, R. Guo, Y. Hu, L. Wu, Mixing enhancement by simple periodic geometric features in microchannels, Chem. Eng. J., 187 (2012) 306–310.
  30. J. Buffle, Z. Zhang, K. Startchev, Metal flux and dynamic speciation at (bio)interfaces. Part I: Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances (Supplementary Information), Environ. Sci. Technol., 41 (2007) 7609–7620.
  31. R.C. Peña, J.C.M. Gamboa, M. Bertotti, T.R.L.C. Paixão, Studies on the electrocatalytic reduction of hydrogen peroxide on a glassy carbon electrode modified with a ruthenium oxide hexacyanoferrate film, Int. J. Electrochem. Sci., 6 (2011) 394–403.
  32. V. Hessel, H. Löwe, F. Schönfeld, Micromixers—a review on passive and active mixing principles, Chem. Eng. Sci., 60 (2005) 2479–2501.
  33. C.Y. Lee, C.L. Chang, Y.N. Wang, L.M. Fu, Microfluidic mixing: a review, Int. J. Mol. Sci., 12 (2011) 3263–3287.