References

  1. H. Sütterlin, R. Alexy, A. Coker, K. Kümmerer, Mixtures of quaternary ammonium compounds and anionic organic compounds in the aquatic environment: elimination and biodegradability in the closed bottle test monitored by LC-MS/MS, Chemosphere, 72 (2008) 479–484.
  2. J. Pernak, M. Smiglak, S.T. Griffin, W.L. Hough, T.B. Wilson, A. Pernak, J. Zabielska-Matejuk, A. Fojutowski, K. Kita, R.D. Rogers, Long alkyl chain quaternary ammonium-based ionic liquids and potential applications, Green Chem., 8 (2006) 798–806.
  3. J. Pernak, J. Nawrot, M. Kot, B. Markiewicz, M. Niemczak, Ionic liquids based stored product insect antifeedants, RSC Adv., 3 (2013) 25019–25029.
  4. N. Kreuzinger, M. Fuerhacker, S. Scharf, M. Uhl, O. Gans, B. Grillitsch, Methodological approach towards the environmental significance of uncharacterized substances—quaternary ammonium compounds as an example, Desalination., 215 (2007) 209–222.
  5. E. Martínez-Carballo, A. Sitka, C. González-Barreiro, N. Kreuzinger, M. Fürhacker, S. Scharf, O. Gans, Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part I. Application to surface, waste and indirect discharge water samples in Austria, Environ. Pollut., 145 (2007) 489–496.
  6. E. Martínez-Carballo, C. González-Barreiro, A. Sitka, N. Kreuzinger, S. Scharf, O. Gans, Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part II. Application to sediment and sludge samples in Austria, Environ. Pollut., 146 (2007) 543–547.
  7. X. Li, B.J. Brownawell, Quaternary ammonium compounds in urban estuarine sediment environments—a class of contaminants in need of increased attention? Environ. Sci. Technol., 44 (2010) 7561–7568.
  8. P. Bassarab, D. Williams, J.R. Dean, E. Ludkin, J.J. Perry, Determination of quaternary ammonium compounds in seawater samples by solid-phase extraction and liquid chromatography-mass spectrometry, J. Chromatogr. A, 1218 (2011) 673–677.
  9. A. Van De Voorde, C. Lorgeoux, M.C. Gromaire, G. Chebbo, Analysis of quaternary ammonium compounds in urban stormwater samples, Environ. Pollut., 164 (2012) 150–157.
  10. C. Zhang, F. Cui, G. Zeng, M. Jiang, Z. Yang, Z. Yu, M. Zhu, L. Shen, Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment, Sci. Total Environ., 518–519 (2015) 352–362.
  11. J. Pernak, K. Sobaszkiewicz, I. Mirska, Anti-microbial activities of ionic liquids, Green Chem., 5 (2003) 52–56.
  12. S.P.M. Ventura, C.S. Marques, A.A. Rosatella, C.A.M. Afonso, F. Gonçalves, J.A.P. Coutinho, Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria, Ecotoxicol. Environ. Saf., 76 (2011) 162–168.
  13. G. Jing, Z. Zhou, J. Zhuo, Quantitative structure-activity relationship (QSAR) study of toxicity of quaternary ammonium compounds on Chlorella pyrenoidosa and Scenedesmus quadricauda, Chemosphere., 86 (2012) 76–82.
  14. R.J. Bernot, M.A. Brueseke, M.A. Evans-White, G.A. Lamberti, Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna, Environ. Toxicol. Chem., 24 (2005) 87–92.
  15. M. Matzke, S. Stolte, J. Arning, U. Uebers, J. Filser, Ionic liquids in soils: effects of different anion species of imidazolium based ionic liquids on wheat (Triticum aestivum) as affected by different clay minerals and clay concentrations, Ecotoxicology., 18 (2009) 197–203.
  16. M. El-Harbawi, Toxicity measurement of imidazolium ionic liquids using acute toxicity test, Procedia Chem., 9 (2014) 40–52.
  17. M.M. Bailey, M.B. Townsend, P.L. Jernigan, J. Sturdivant, W.L. Hough-Troutman, J.F. Rasco, R.P. Swatloski, R.D. Rogers, R.D. Hood, Developmental toxicity assessment of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1 mice, Green Chem., 10 (2008) 1213–1217.
  18. Y. Cheng, S.H. Wright, M.J. Hooth, I.G. Sipes, Characterization of the disposition and toxicokinetics of n-butylpyridinium chloride in male F-344 rats and female B6C3F1 mice and its transport by organic cation transporter 2, Drug Metab. Dispos., 37 (2009) 909–916.
  19. T.P.T. Pham, C.W. Cho, Y.S. Yun, Environmental fate and toxicity of ionic liquids: a review, Water Res., 44 (2010) 352–372.
  20. N. Gal, D. Malferarri, S. Kolusheva, P. Galletti, E. Tagliavini, R. Jelinek, Membrane interactions of ionic liquids: possible determinants for biological activity and toxicity, Biochim. Biophys. Acta, 12 (2012) 2967–2974.
  21. X.Y. Li, Y.R. Luo, M.X. Yun, J. Wang, J.J. Wang, Effects of 1-methyl-3-octylimidazolium bromide on the anti-oxidant system of earthworm, Chemosphere., 78 (2009) 853–858.
  22. X.Y. Li, C.Q. Jing, W.L. Lei, J. Li, J.J. Wang, Apoptosis caused by imidazolium-based ionic liquids in PC12 cells, Ecotoxicol. Environ. Saf., 83 (2012) 102–107.
  23. Z. Du, L. Zhu, M. Dong, J. Wang, J. Wang, X. Hui, T. Liu, Y. Guo, Oxidative stress and genotoxicity of the ionic liquid 1-octyl-3-methylimidazolium bromide in zebrafish (Danio rerio), Arch. Environ. Contam. Toxicol., 67 (2014) 261–269.
  24. J. Ma, X. Dong, Q. Fang, J. Wang, X. Li, Toxicity of imidazoliumbased ionic liquids on Physa acuta and the snail antioxidant stress response, J. Biochem. Mol. Toxicol., 28 (2014) 69–75.
  25. D.R. Livingstone, Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms, Mar. Pollut. Bull., 42 (2001) 656–666.
  26. V.I. Lushchak, Environmentally induced oxidative stress in aquatic animals, Aquat. Toxicol., 101 (2011) 13–30.
  27. A. Valavanidis, T. Vlahogianni, M. Dassenakis, M. Scoullos, Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants, Ecotox. Environ. Saf., 64 (2006) 178–189.
  28. OECD, Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, 2004.
  29. ASTM E1440—91(2012), Standard Guide for Acute Toxicity Test with the Rotifer Brachionus, ASTM International, West Conshohocken, PA, 2012.
  30. OECD, Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, 2011.
  31. OECD, Test No. 221: Lemna sp. Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, 2006.
  32. L. Góth, A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim. Acta, 196 (1991) 143–151.
  33. H.P. Misra, I. Fridovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem., 247 (1972) 3170–3175.
  34. W.H. Habig, M.J. Pabst, W.B. Jakoby, The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249 (1974) 7130–7139.
  35. Commission of the European Communities, Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for Existing Substances. Part II—Environmental risk assessment, Brussels, Office for Official Publications of the European Communities, 1996.
  36. K.S. Egorova, V.P. Ananikov, Toxicity of ionic liquids: eco(cyto) activity as complicated, but unavoidable parameter for taskspecific optimization, ChemSusChem, 7 (2014) 336–360.
  37. M.E. Heckenbach, F.N. Romero, M.D. Green, R.U. Halden, Metaanalysis of ionic liquid literature and toxicology, Chemosphere, 150 (2016) 266–274.
  38. S.P. Denyer, G.S.A.B. Stewart, Mechanisms of action of disinfectants, Int. Biodeterior. Biodegrad., 41 (1998) 261–268.
  39. G. Nałȩcz-Jawecki, E. Grabińska-Sota, P. Narkiewicz, The toxicity of cationic surfactants in four bioassays, Ecotoxicol. Environ. Saf., 54 (2003) 87–91.
  40. V. Tsarpali, S. Dailianis, Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: role of acetone in the induced toxicity, Ecotoxicol. Environ. Saf., 117 (2015) 62–71.
  41. L. Campanella, F. Cubadda, M.P. Sammartino, A. Saoncella, An algal biosensor for the monitoring of water toxicity in estuarine environments, Water Res., 35 (2001) 69–76.
  42. D. van Wijk, M.G. van den Bos, I. Garttener-Arends, M. Geurts, J. Kamstra, P. Thomas, Bioavailability and detoxification of cationics: I. Algal toxicity of alkyltrimethyl ammonium salts in the presence of suspended sediment and humic acid, Chemosphere, 75 (2009) 303–309.
  43. D.J. Couling, R.J. Bernot, K.M. Docherty, J.K. Dixon, E.J. Maginn, Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling, Green Chem., 8 (2006) 82–90.
  44. M.T. García, I. Ribosa, T. Guindulain, J. Sánchez-Leal, J. Vives- Rego, Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment, Environ. Pollut., 111 (2001) 169–175.
  45. M. Sandbacka, I. Christianson, B. Isomaa, The acute toxicity of surfactants on fish cells, Daphnia magna and fish—a comparative study, Toxicol. Vitr., 14 (2000) 61–68.
  46. C. Pretti, C. Chiappe, I. Baldetti, S. Brunini, G. Monni, L. Intorre, Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio, Ecotoxicol. Environ. Saf., 72 (2009) 1170–1176.
  47. Y. Wang, Y. Zhang, X. Li, M. Sun, Z. Wei, Y. Wang, A. Gao, D. Chen, X. Zhao, X. Feng, Exploring the effects of different types of surfactants on zebrafish embryos and larvae, Sci. Rep., 5 (2015) 10107.
  48. M. Yu, S.H. Wang, Y.R. Luo, Y.W. Han, X.Y. Li, B.J. Zhang, J.J. Wang, Effects of the 1-alkyl-3-methylimidazolium bromide ionic liquids on the antioxidant defense system of Daphnia magna, Ecotoxicol. Environ. Saf., 72 (2009) 1798–1804.
  49. P. Luis, A. Garea, A. Irabien, Quantitative structure-activity relationships (QSARs) to estimate ionic liquids ecotoxicity EC50 (Vibrio fischeri), J. Mol. Liq., 152 (2010) 28–33.
  50. E. Richter, A. Wick, T.A. Ternes, A. Coors, Ecotoxicity of climbazole, a fungicide contained in antidandruff shampoo, Environ. Toxicol. Chem., 32 (2013) 2816–2825.
  51. E. Sancho, M.J. Villarroel, C. Fernández, E. Andreu, M.D. Ferrando, Short-term exposure to sublethal tebuconazole induces physiological impairment in male zebrafish (Danio rerio), Ecotoxicol. Environ. Saf., 73 (2010) 370–376.
  52. C.M. Messina, C. Faggio, V.A. Laudicella, M. Sanfilippo, F. Trischitta, A. Santulli, Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus ggalloprovincialis): regulatory volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress, Aquat. Toxicol., 157 (2014) 94–100.
  53. J. Wang, J. Wang, C. Xu, R. Liu, Y. Chen, Molecular mechanism of catalase activity change under sodium dodecyl sulfateinduced oxidative stress in the mouse primary hepatocytes, J. Hazard. Mater., 307 (2016) 173–183.
  54. B. Zhang, X. Li, D. Chen, J. Wang, Effects of 1-octyl-3- methylimidazolium bromide on the antioxidant system of Lemna minor, Protoplasma., 250 (2013) 103–110.
  55. M.I. Viseu, E.P. Melo, T.I. Carvalho, R.F. Correia, S.M.B. Costa, Unfolding kinetics of beta-lactoglobulin induced by surfactant and denaturant: a stopped-flow/fluorescence study., Biophys. J., 93 (2007) 3601–3612.
  56. D.E. Otzen, P. Sehgal, P. Westh, α-Lactalbumin is unfolded by all classes of surfactants but by different mechanisms, J. Colloid Interface Sci., 329 (2009) 273–283.
  57. A. Lee, S.K.Y. Tang, C.R. Mace, G.M. Whitesides, Denaturation of proteins by SDS and by tetra-alkylammonium dodecyl sulfates, Langmuir, 27 (2011) 11560–11574.
  58. D. Otzen, Protein-surfactant interactions: a tale of many states, Biochim. Biophys. Acta, Proteins Proteomics, 1814 (2011) 562–591.