References

  1. D. Mowla, H.N. Tran, D.G. Allen, A review of the properties of biosludge and its relevance to enhanced dewatering processes, Biomass Bioenergy, 58 (2013) 365–378.
  2. S.J. Skinner, L.J. Studer, D.R. Dixon, P. Hillis, C.A. Rees, R.C. Wall, R.G. Cavalida, S.P. Usher, A.D. Stickland, P.J. Scales, Quantification of wastewater sludge dewatering, Water Res., 82 (2015) 2–13.
  3. S. Liu, H. Horn, Effects of Fe(II) and Fe(III) on the single-stage deammonification process treating high-strength reject water from sludge dewatering, Bioresour. Technol., 114 (2012) 12–19.
  4. D. Podstawczyk, A. Witek-Krowiak, A. Dawiec-Liśniewska, P. Chrobot, D. Skrzypczak, Removal of ammonium and orthophosphates from reject water generated during dewatering of digested sewage sludge in municipal wastewater treatment plant using adsorption and membrane contactor system, J. Cleaner Prod., 161 (2017) 277–287.
  5. Y. Qi, K.B. Thapa, A.F.A. Hoadley, Application of filtration aids for improving sludge dewatering properties—a review, Chem. Eng. J., 171 (2011) 373–384.
  6. M. Niu, W. Zhang, D. Wang, Y. Chen, R. Chen, Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants, Bioresour. Technol., 144 (2013) 337–343.
  7. Y. Liu, L. Wang, J. Ma, X. Zhao, Z. Huang, G.D. Mahadevan, J. Qi, Improvement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solution, Chem. Eng. J., 287 (2016) 11–18.
  8. M.B. Kurade, K. Murugesan, A. Selvam, S.-M. Yu, J.W.C. Wong, Ferric biogenic flocculant produced by Acidithiobacillus ferrooxidans enable rapid dewaterability of municipal sewage sludge: a comparison with commercial cationic polimer, Int. Biodeterior. Biodegrad., 96 (2014) 105–111.
  9. J.W.C. Wong, J. Zhou, M.B. Kurade, K. Murugesan, Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching, Bioresour. Technol., 179 (2015) 78–83.
  10. Y. Shi, J. Yang, W. Yu, S. Zhang, S. Liang, J. Song, Q. Xu, N. Ye, S. He, C. Yang, J. Hu, Synergetic conditioning of sewage sludge via Fe2+/persulfate and skeleton builder: Effect on sludge characteristics and dewaterability, Chem. Eng. J., 270 (2015) 572–581.
  11. D.-Q. He, H.-W. Luo, B.-C. Huang, C. Qian, H.-Q. Yu, Enhanced dewatering of excess activated sludge through decomposing its extracellular polymeric substances by a Fe@Fe2O3-based composite conditioner, Bioresour. Technol., 218 (2016) 526–532.
  12. R. Mo, S. Huang, W. Dai, J. Liang, S. Sun, A rapid Fenton treatment technique for sewage sludge dewatering, Chem. Eng. J., 269 (2015) 391–398.
  13. W. Yu, J. Yang, Y. Shi, J. Song, Y. Shi, J. Xiao, C. Li, X. Xu, S. He, S. Liang, X. Wu, J. Hu, Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime, Water Res., 95 (2016) 124–133.
  14. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15
  15. T.-Y. Ying, S. Yiacoumi, C. Tsouris, High-gradient magnetically seeded filtration, Chem. Eng. Sci., 55 (2000) 1101–1113.
  16. T. Abbasov, Magnetic filtration with magnetized granular beds: Basic principles and filter performance, China Particuology, 5 (2007) 71–83.
  17. I.A. Bakhteeva, I.V. Medvedeva, I.V. Byzov, S.V. Zhakov, M.A. Uimin, A.E. Yermakov, Speeding up the magnetic sedimentation of surface-modified iron-based nanoparticles, Sep. Purif. Technol., 188 (2017) 341–347.
  18. R. Lakshmanan, G. Kuttuva Rajarao, Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles, Bioresour. Technol., 153 (2014) 333–339.
  19. H. Tanaka, Y. Uno, S. Morisada, K. Ohto, H. Kawakita, Filtration and recovery of starch granules using assembled magnetite filter, Chem. Eng. Process., 110 (2016) 128–133.
  20. X. Qian, Y. Wang, H. Zheng, Migration and distribution of water and organic matter for activated sludge during coupling magnetic conditioning-horizontal electrodewatering (CM-HED), Water Res., 88 (2016) 93–103.
  21. M. Stolarski, B. Fuchs, S.B. Kassac, C. Eichholza, H. Nirschla, Magnetic field enhanced press-filtration, Chem. Eng. Sci., 61 (2006) 6395–6403.
  22. C. Eichholz, M. Stolarski, V. Goertz, H. Nirschl, Magnetic field enhanced cake filtration of superparamagnetic PVAc-particles, Chem. Eng., Sci. 63 (2008) 3193–3200.
  23. Iu.A. Bakhteeva, I.V. Medvedeva, I.V. Byzov, S.V. Zhakov, M.A. Uimin, A.E. Yermakov, Speeding up the magnetic sedimentation of surface-modified iron-based nanoparticles, Sep. Purif. Technol., 188 (2017) 341–347.
  24. M.R. Mehrnia, M. Homayoonfal, Fouling mitigation behavior of magnetic responsive nanocomposite membranes in a magnetic membrane bioreactor, J. Membr. Sci., 520 (2016) 881–894.
  25. J. Ifthikar, J. Wang, Q. Wang, T. Wang, H. Wang, A. Khan, A. Jawad, T. Sun, X. Jiao, Z. Chen, Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications, Bioresour. Technol., 238 (2017) 399–406.
  26. A.Y. Gebreyohannes, M.R. Bilad, T. Verbiest, C.M. Courtin, E. Dornez, L. Giorno, E. Curcio, I.F.J. Vankelecom, Nanoscale tuning of enzyme localization for enhanced reactor performance in a novel magnetic-responsive biocatalytic membrane reactor, J. Membr. Sci., 487 (2015) 209–220.
  27. Z. Al-Qodaha, M. Al-Shannagb, M. Al-Busoulc, I. Penchevd, W. Orfali, Immobilized enzymes bioreactors utilizing a magnetic field: a review, Biochem. Eng. J., 121 (2017) 94–106.
  28. Z. Liu, X. Gao, J. Zhao, Y. Xiang, The sterilization effect of solenoid magnetic field direction on heterotrophic bacteria in circulating cooling water, Procedia Eng., 174 (2017) 1296–1302.
  29. H. Yavuz, S.S. Celebi, Effects of magnetic field on activity of activated sludge in wastewater treatment, Enzyme Microb. Technol., 26 (2000) 22–27.
  30. A. Tomska, L. Wolny, Enhancement of biological wastewater treatment by magnetic field exposure, Desalination, 222 (2008) 368–373.
  31. M. Łebkowska, A. Rutkowska-Narożniak, E. Pajor, Z. Pochanke, Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge, Bioresour. Technol., 102 (2011) 8777–8782.
  32. Z. Wang, X. Liu, S.-Q. Ni, J. Zhang, X. Zhang, H. A. Ahmad, B. Gao, Weak magnetic field: a powerful strategy to enhance partial nitrification, Water Res., 120 (2017) 190–198.
  33. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/ American Water Works Association/Water Environment Federation, Washington D.C., USA, 2005.
  34. Characterization of Sludges—Filtration Properties—Part 1: Capillary Suction Time (CST), PN-EN 14701-1:2007, Polish Committee for Standardization, Warsaw, 2007 (in Polish).
  35. Characterization of Sludges—Filtration Properties—Part 2: Determination of Specific Resistance to Filtration, PN-EN 14701- 2:2013-07, Polish Committee for Standardization, Warsaw, 2013.
  36. Characterization of Sludges—Filtration Properties—Part 3: Determination of the Compressibility, PN-EN 14701-3:2007, Polish Committee for Standardization, Warsaw, 2007 (in Polish).
  37. A. Stanisz, Accessible Statistic Course Using STATISTICA PL on Examples of Medicine. Vol. 2. Linear and Nonlinear Models, StatSoft Poland, Kraków, 2006 (in Polish).
  38. A. Stanisz, Accessible Statistic Course Using STATISTICA PL on Examples of Medicine. Vol. 3. Multivariate Analysis, StatSoft Poland, Kraków, 2006 (in Polish).
  39. E. Hans, L. Madsen, Theory of electrolyte crystallization in magnetic field, J. Cryst. Growth, 305 (2007) 271.