References
- D. Mowla, H.N. Tran, D.G. Allen, A review of the properties of
biosludge and its relevance to enhanced dewatering processes,
Biomass Bioenergy, 58 (2013) 365–378.
- S.J. Skinner, L.J. Studer, D.R. Dixon, P. Hillis, C.A. Rees, R.C.
Wall, R.G. Cavalida, S.P. Usher, A.D. Stickland, P.J. Scales,
Quantification of wastewater sludge dewatering, Water Res., 82
(2015) 2–13.
- S. Liu, H. Horn, Effects of Fe(II) and Fe(III) on the single-stage
deammonification process treating high-strength reject water
from sludge dewatering, Bioresour. Technol., 114 (2012) 12–19.
- D. Podstawczyk, A. Witek-Krowiak, A. Dawiec-Liśniewska,
P. Chrobot, D. Skrzypczak, Removal of ammonium and
orthophosphates from reject water generated during dewatering
of digested sewage sludge in municipal wastewater treatment
plant using adsorption and membrane contactor system, J.
Cleaner Prod., 161 (2017) 277–287.
- Y. Qi, K.B. Thapa, A.F.A. Hoadley, Application of filtration aids
for improving sludge dewatering properties—a review, Chem.
Eng. J., 171 (2011) 373–384.
- M. Niu, W. Zhang, D. Wang, Y. Chen, R. Chen, Correlation of
physicochemical properties and sludge dewaterability under
chemical conditioning using inorganic coagulants, Bioresour.
Technol., 144 (2013) 337–343.
- Y. Liu, L. Wang, J. Ma, X. Zhao, Z. Huang, G.D. Mahadevan, J.
Qi, Improvement of settleability and dewaterability of sludge
by newly prepared alkaline ferrate solution, Chem. Eng. J., 287
(2016) 11–18.
- M.B. Kurade, K. Murugesan, A. Selvam, S.-M. Yu, J.W.C.
Wong, Ferric biogenic flocculant produced by Acidithiobacillus
ferrooxidans enable rapid dewaterability of municipal sewage
sludge: a comparison with commercial cationic polimer, Int.
Biodeterior. Biodegrad., 96 (2014) 105–111.
- J.W.C. Wong, J. Zhou, M.B. Kurade, K. Murugesan, Influence of
ferrous ions on extracellular polymeric substances content and
sludge dewaterability during bioleaching, Bioresour. Technol.,
179 (2015) 78–83.
- Y. Shi, J. Yang, W. Yu, S. Zhang, S. Liang, J. Song, Q. Xu, N.
Ye, S. He, C. Yang, J. Hu, Synergetic conditioning of sewage
sludge via Fe2+/persulfate and skeleton builder: Effect on sludge
characteristics and dewaterability, Chem. Eng. J., 270 (2015)
572–581.
- D.-Q. He, H.-W. Luo, B.-C. Huang, C. Qian, H.-Q. Yu, Enhanced
dewatering of excess activated sludge through decomposing
its extracellular polymeric substances by a Fe@Fe2O3-based
composite conditioner, Bioresour. Technol., 218 (2016) 526–532.
- R. Mo, S. Huang, W. Dai, J. Liang, S. Sun, A rapid Fenton
treatment technique for sewage sludge dewatering, Chem. Eng.
J., 269 (2015) 391–398.
- W. Yu, J. Yang, Y. Shi, J. Song, Y. Shi, J. Xiao, C. Li, X. Xu, S. He, S.
Liang, X. Wu, J. Hu, Roles of iron species and pH optimization
on sewage sludge conditioning with Fenton’s reagent and lime,
Water Res., 95 (2016) 124–133.
- P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton
process for water and wastewater treatment: an overview,
Desalination, 299 (2012) 1–15
- T.-Y. Ying, S. Yiacoumi, C. Tsouris, High-gradient magnetically
seeded filtration, Chem. Eng. Sci., 55 (2000) 1101–1113.
- T. Abbasov, Magnetic filtration with magnetized granular beds:
Basic principles and filter performance, China Particuology, 5
(2007) 71–83.
- I.A. Bakhteeva, I.V. Medvedeva, I.V. Byzov, S.V. Zhakov, M.A.
Uimin, A.E. Yermakov, Speeding up the magnetic sedimentation
of surface-modified iron-based nanoparticles, Sep. Purif.
Technol., 188 (2017) 341–347.
- R. Lakshmanan, G. Kuttuva Rajarao, Effective water content
reduction in sewage wastewater sludge using magnetic
nanoparticles, Bioresour. Technol., 153 (2014) 333–339.
- H. Tanaka, Y. Uno, S. Morisada, K. Ohto, H. Kawakita, Filtration
and recovery of starch granules using assembled magnetite
filter, Chem. Eng. Process., 110 (2016) 128–133.
- X. Qian, Y. Wang, H. Zheng, Migration and distribution
of water and organic matter for activated sludge during
coupling magnetic conditioning-horizontal electrodewatering
(CM-HED), Water Res., 88 (2016) 93–103.
- M. Stolarski, B. Fuchs, S.B. Kassac, C. Eichholza, H. Nirschla,
Magnetic field enhanced press-filtration, Chem. Eng. Sci., 61
(2006) 6395–6403.
- C. Eichholz, M. Stolarski, V. Goertz, H. Nirschl, Magnetic field
enhanced cake filtration of superparamagnetic PVAc-particles,
Chem. Eng., Sci. 63 (2008) 3193–3200.
- Iu.A. Bakhteeva, I.V. Medvedeva, I.V. Byzov, S.V. Zhakov,
M.A. Uimin, A.E. Yermakov, Speeding up the magnetic
sedimentation of surface-modified iron-based nanoparticles,
Sep. Purif. Technol., 188 (2017) 341–347.
- M.R. Mehrnia, M. Homayoonfal, Fouling mitigation behavior of
magnetic responsive nanocomposite membranes in a magnetic
membrane bioreactor, J. Membr. Sci., 520 (2016) 881–894.
- J. Ifthikar, J. Wang, Q. Wang, T. Wang, H. Wang, A. Khan, A.
Jawad, T. Sun, X. Jiao, Z. Chen, Highly efficient lead distribution
by magnetic sewage sludge biochar: sorption mechanisms and
bench applications, Bioresour. Technol., 238 (2017) 399–406.
- A.Y. Gebreyohannes, M.R. Bilad, T. Verbiest, C.M. Courtin,
E. Dornez, L. Giorno, E. Curcio, I.F.J. Vankelecom, Nanoscale
tuning of enzyme localization for enhanced reactor performance
in a novel magnetic-responsive biocatalytic membrane reactor,
J. Membr. Sci., 487 (2015) 209–220.
- Z. Al-Qodaha, M. Al-Shannagb, M. Al-Busoulc, I. Penchevd, W.
Orfali, Immobilized enzymes bioreactors utilizing a magnetic
field: a review, Biochem. Eng. J., 121 (2017) 94–106.
- Z. Liu, X. Gao, J. Zhao, Y. Xiang, The sterilization effect of
solenoid magnetic field direction on heterotrophic bacteria in
circulating cooling water, Procedia Eng., 174 (2017) 1296–1302.
- H. Yavuz, S.S. Celebi, Effects of magnetic field on activity of
activated sludge in wastewater treatment, Enzyme Microb.
Technol., 26 (2000) 22–27.
- A. Tomska, L. Wolny, Enhancement of biological wastewater
treatment by magnetic field exposure, Desalination, 222 (2008)
368–373.
- M. Łebkowska, A. Rutkowska-Narożniak, E. Pajor, Z. Pochanke,
Effect of a static magnetic field on formaldehyde biodegradation
in wastewater by activated sludge, Bioresour. Technol., 102
(2011) 8777–8782.
- Z. Wang, X. Liu, S.-Q. Ni, J. Zhang, X. Zhang, H. A. Ahmad,
B. Gao, Weak magnetic field: a powerful strategy to enhance
partial nitrification, Water Res., 120 (2017) 190–198.
- APHA, Standard Methods for the Examination of Water and
Wastewater, 21st ed., American Public Health Association/
American Water Works Association/Water Environment
Federation, Washington D.C., USA, 2005.
- Characterization of Sludges—Filtration Properties—Part 1:
Capillary Suction Time (CST), PN-EN 14701-1:2007, Polish
Committee for Standardization, Warsaw, 2007 (in Polish).
- Characterization of Sludges—Filtration Properties—Part 2:
Determination of Specific Resistance to Filtration, PN-EN 14701-
2:2013-07, Polish Committee for Standardization, Warsaw, 2013.
- Characterization of Sludges—Filtration Properties—Part 3:
Determination of the Compressibility, PN-EN 14701-3:2007,
Polish Committee for Standardization, Warsaw, 2007 (in Polish).
- A. Stanisz, Accessible Statistic Course Using STATISTICA PL
on Examples of Medicine. Vol. 2. Linear and Nonlinear Models,
StatSoft Poland, Kraków, 2006 (in Polish).
- A. Stanisz, Accessible Statistic Course Using STATISTICA PL
on Examples of Medicine. Vol. 3. Multivariate Analysis, StatSoft
Poland, Kraków, 2006 (in Polish).
- E. Hans, L. Madsen, Theory of electrolyte crystallization in
magnetic field, J. Cryst. Growth, 305 (2007) 271.