References

  1. S.K. Brar, V. Mausam, R.D. Tyagi, R.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts, Waste Manage., 30 (2008) 504–520.
  2. J. Lan, N. Gou, C. Gao, M. He, A.Z. Gu, Comparative and mechanistic genotoxicity assessment of nanomaterials via a quantitative toxicogenomics approach across multiple species, Environ. Sci. Technol., 48 (2014) 12937–12945.
  3. N. Mahaye, M. Thwala, D.A. Cowan, N. Musee, Genotoxicity of metal based engineered nanoparticles in aquatic organisms: a review, Mutat. Res., 773 (2017) 134–160. doi: 10.1016/j. mrrev.2017.05.004.
  4. S.W. Lee, S.M. Kim, J. Choi, Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure, Environ. Toxicol. Pharmacol., 28 (2009) 86–91.
  5. N. Bayat, V.R. Lopes, J. Scholermann, L.D. Jensen, S. Cristobal, Vascular toxicity of ultra-small TiO2 nanoparticles and single walled carbon nanotubes in vitro and in vivo, Biomaterials, 63 (2015) 1–13.
  6. C. Bolognesi, M. Hayashi, Micronucleus assay in aquatic animals, Mutagenesis, 26 (2011) 205–213.
  7. C. Bolognesi, S. Cirillo, Genotoxicity biomarkers in aquatic bioindicators, Curr. Zool., 60 (2014) 273–284.
  8. C.W. Theodorakis, Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment, Ecotoxicology, 10 (2001) 245–256.
  9. J.A. Hagger, F.A. Atienzar, A.N. Jha, Genotoxic, cytotoxic, developmental and survival effects of tritiated water in the early life stages of the marine mollusc, Mytilus edulis, Aquat. Toxicol., 74 (2005) 205–217.
  10. F.A. Atienzar, A.N. Jha, The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review, Mutat. Res., 613 (2006) 76–102.
  11. A. Mengoni, C. Gonnelli, F. Galardi, R. Gabbrielli, Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis, Mol. Ecol., 9 (2000) 1319–1324.
  12. M. Załęska-Radziwiłł, N. Doskocz, DNA changes in Pseudomonas putida induced by aluminum oxide nanoparticles using RAPD analysis, Desal. Wat. Treat., 57 (2016) 1573–1581.
  13. A. Rabajczyk, A. Garbala, Role of active sludge in the reduction of inorganic pollutants on the example of the sewage treatment plant in Suchedniów, J. Święt. Moun. Reg. Series B – Nat. Sci., 32 (2011) 97–112.
  14. S. Marqués, J.L. Ramos, Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways, Mol. Microbiol., 9 (1993) 923–929.
  15. T.C. Hazen, C.B. Fliermans, R.P. Hirsch, G.W. Esch, Prevalence and distribution of Aeromonas hydrophila in the United States, Appl. Environ. Microbiol., 36 (1978) 731–738.
  16. M. Eshed, S. Pol, A. Gedanken, M. Balasubramanian, Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method, Beilstein J. Nanotechnol., 2 (2011) 198–203.
  17. A. Kaur, U. Gupta, A review on applications of nanoparticles for the preconcentration of environmental pollutants, J. Mater. Chem., 19 (2009) 8279–8289.
  18. M. Załęska-Radziwiłł, N. Doskocz, Ecotoxicity of zirconium oxide nanoparticles in relation to aquatic invertebrates, Desal. Wat. Treat., 57 (2016) 1443–1450.
  19. N. Chrzanowska, M. Załęska-Radziwiłł, The impacts of aluminum and zirconium nano-oxides on planktonic and biofilm bacteria, Desal. Wat. Treat., 52 (2014) 3608–3689.
  20. A. Ruiz-Manzano, L. Yuste, F. Rojo, Levels and activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions, J. Bacteriol., 187 (2005) 3678–3686.
  21. N.C.M. Gomes, I.A. Kosheleva, W.-R. Abraham, K. Smalla, Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community, FEMS Microbiol. Ecol., 54 (2005) 21–33.
  22. C. Conte, I. Mutti, P. Puglisi, DNA fingerprinting analysis by a PCR based method for monitoring the genotoxic effects of heavy metals pollution, Chemosphere, 37 (1998) 2739–2749.
  23. M. Nei, W.H. Li, Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. USA, 76 (1979) 5269–5273.
  24. F. Atienzar, M. Conradi, A. Evenden, A. Jha, M. Depledge, Qualitative assessment of genotoxicity using RAPD: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene, Environ. Toxicol. Chem., 18 (1999) 2275–2282.
  25. C. Luceri, C. De Filippo, G. Caderni, L. Gambacciani, M. Salvadori, A. Giannini, P. Dolara, Detection of somatic DNA alterations in azoxymethane-induced F344 rat colon tumors by random amplified polymorphic DNA analysis, Carcinogenesis, 21 (2000) 1753–1756.
  26. S. Cenkci, M. Yildiz, I.H. Ciğerci, A. Bozdağ, H. Terzi, E.S. Terzi, Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays, Ecotoxicol. Environ. Saf., 7 (2010) 1558–1564.
  27. C.W.O.H. Veld, J. Jansen, M.Z. Zdzienicka, H. Vrieling, A.A. van Zeeland, Methyl methane sulfonate-induced hprt mutation spectra in the Chinese hamster cell line CH09 and its xrcc1-deficient derivative EM-C11, Mutat. Res., 398 (1998) 83–92.
  28. A. Zgórska, Application of Bioindicative Methods to Assess the Changes in Waste Water of Genotoxicity under Disinfection Processes, Silesian University of Technology, Faculty of Energy and Environmental Engineering, Dissertation, Gliwice, 2013.
  29. W. Liu, Y.S. Yang, P.J. Li, Q.X. Zhou, L.J. Xie, Y.P. Han, Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices, J. Hazard. Mater., 161 (2009) 878–883.
  30. W. Liu, P.J. Li, X.M. Qi, Q.X. Zhou, L. Zheng, T.H. Sun, Y.S. Yang, DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis, Chemosphere, 61 (2005) 158–167.
  31. F.A. Atienzar, A.N. Jha, The random amplified polymorphic DNA (RAPD) assay to determine DNA alterations, repair and transgenerational effects in B(a)P exposed Daphnia magna, Mutat. Res., 552 (2004) 125–140.
  32. S. Cenkci, M. Yıldız, I.H. Ciğerci, M. Konuk, A. Bozdag, Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings, Chemosphere, 76 (2009) 900–906.
  33. S.H.M. Qari, DNA-RAPD fingerprinting and cytogenetic screening of genotoxic and antigenotoxic effects of aqueous extracts of Costus speciosus (Koen.), JKAU: Sci., 22 (2010) 133–152.
  34. L. Zhou, J. Li, X. Lin, K.A.S. Al-Rasheid, Use of RAPD to detect DNA damage induced by nitrofurazone in marine ciliate, Euplotes vannus (Protozoa, Ciliophora), Aquat. Toxicol., 103 (2011) 225–232.
  35. P. Nan, X. Xia, Q. Du, J. Chen, X. Wu, Z. Chang, Genotoxic effects of 8-hydroxylquinoline in loach (Misgurnus anguillicaudatus) assessed by the micronucleus test, comet assay and RAPD analysis, Environ. Toxicol. Pharmacol., 35 (2013) 434–443.
  36. H.C. Zhang, C.Y. Shi, H.H. Yang, G.W. Chen, D.Z. Liu, Genotoxicity evaluation of ionic liquid 1-octyl-3-methylimidazolium bromide in freshwater planarian Dugesia japonica using RAPD assay, Ecotoxicol. Environ. Saf., 134 (2016) 17–22.
  37. O. Aksakal, N. Esim, Evaluation of arsenic trioxide genotoxicity in wheat seedlings using oxidative system and RAPD assays, Environ. Sci. Pollut. Res., 22 (2015) 7120–7128.
  38. M. Ghosh, M. Bandyopadhyay, A. Mukherjee, Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes, Chemosphere, 81 (2010) 1253–1262.
  39. C. Ladhar, B. Geffroy, S. Cambier, M. Treguer-Delapierre, E. Durand, D. Brèthes, J.P. Bourdineaud, Impact of dietary cadmium sulphide nanoparticles on Danio rerio zebrafish at very low contamination pressure, Nanotoxicology, 8 (2014) 676–685.
  40. B. Geffroy, C. Ladhar, S. Cambier, M. Treguer-Delapierre, D. Brèthes, J.P. Bourdineaud, Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time, Nanotoxicology, 6 (2012) 144–160.
  41. A. Dedeh, A. Ciutat, M. Treguer-Delapierre, J.P. Bourdineaud, Impact of gold nanoparticles on zebrafish exposed to a spiked sediment, Nanotoxicology, 9 (2015) 71–80.
  42. H.D. Wolf, R. Blust, T. Backeljau, The use of RAPD in ecotoxicology, Mutat. Res., 566 (2004) 249–262.
  43. A. Boxall, Q. Chaudhry, A. Jones, B. Jefferson, C. Watts, Current and Future Predicted Environmental Exposure to Engineered Nanoparticles, Central Science Laboratory, York, 2007.
  44. B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut., 150 (2007) 5–22.
  45. N.C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the environment, Environ. Sci. Technol., 15 (2008) 4447–4453.
  46. T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut., 186 (2014) 69–76.