References
- B. Song, G. Zeng, J. Gong, J. Liang, P. Xu, Z. Liu, Y. Zhang,
C. Zhang, M. Cheng, Y. Liu, S. Ye, H. Yi, X. Ren, Evaluation
methods for assessing effectiveness of in situ remediation of soil
and sediment contaminated with organic pollutants and heavy
metals, Environ. Int., 105 (2017) 43–55.
- K. Vijayalakshmi, B.M. Devi, S. Latha, T. Gomathi, P.N. Sudha,
J. Venkatesan, S. Anil, Batch adsorption and desorption studies
on the removal of lead (II) from aqueous solution using
nanochitosan/sodium alginate/microcrystalline cellulose beads,
Int. J. Biol. Macromol., 104 (2016) 1483–1494.
- D.W. O’Connell, C. Birkinshaw, T.F. O’Dwyer, Heavy metal
adsorbents prepared from the modification of cellulose: a
review, Bioresour. Technol., 99 (2008) 6709–6724.
- L. Li, J. Dong, T.M. Nenoff, Transport of water and alkali metal
ions through MFI zeolite membranes during reverse osmosis,
Sep. Purif. Technol., 53 (2007) 42–48.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- S.K. Ramamoorthy, M. Skrifvars, A. Persson, A review of natural
fibers used in biocomposites: plant, animal and regenerated
cellulose fibers, Polym. Rev., 55 (2015) 107–162.
- W. Yang, B. Fang, Y.Y. Tang, Fast and accurate vanishing point
detection and its application in inverse perspective mapping
of structured road, IEEE Trans. Syst. Man Cybern. Syst., (2016)
1–12.
- F. Wendler, F. Meister, D. Wawro, E. Wesolowska, D. Ciechańska,
B. Saake, J. Puls, N. le Moigne, P. Navard, Polysaccharide blend
fibres formed from NaOH, N-methylmorpholine-N-oxide and
1-Ethyl-3-methylimidazolium acetate, Fibres Text. East. Eur., 79
(2010) 21–30.
- A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Ionic liquids
and their interaction with cellulose, Chem. Rev., 109 (2009)
6712–6728.
- B. Lindman, G. Karlström, L. Stigsson, On the mechanism of
dissolution of cellulose, J. Mol. Liq., 156 (2010) 76–81.
- H.P. Fink, P. Weigel, H.J. Purz, J. Ganster, Structure formation
of regenerated cellulose materials from NMMO-solutions,
Prog. Polym. Sci., 26 (2001) 1473–1524.
- S. Wang, A. Lu, L. Zhang, Recent advances in regenerated
cellulose materials, Prog. Polym. Sci., 53 (2016) 169–206.
- R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Ionic liquids are
not always green: hydrolysis of 1-butyl-3-methylimidazolium
hexafluorophosphate, Green Chem., 5 (2003) 361.
- N. Gathergood, M.T. Garcia, P.J. Scammells, Biodegradable ionic
liquids: Part I. Concept, preliminary targets and evaluation,
Green Chem., 6 (2004) 166.
- N.P. Novoselov, E.S. Sashina, O.G. Kuz’mina, S.V. Troshenkova,
Ionic liquids and their use for the dissolution of natural
polymers, Russ. J. Gen. Chem., 77 (2007) 1395–1405.
- S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, G. Wu,
Dissolution of cellulose with ionic liquids and its application: a
mini-review, Green Chem., 8 (2006) 325–327.
- C.R. Rambo, D.O.S. Recouvreux, C.A. Carminatti, A.K.
Pitlovanciv, R.V. Antônio, L.M. Porto, Template assisted
synthesis of porous nanofibrous cellulose membranes for tissue
engineering, Mater. Sci. Eng. C, 28 (2008) 549–554.
- Y.N. Kuo, J. Hong, A new method for cellulose membrane
fabrication and the determination of its characteristics, J. Colloid
Interface Sci., 285 (2005) 232–238.
- W. Xiao, W. Yin, S. Xia, P. Ma, The study of factors affecting
the enzymatic hydrolysis of cellulose after ionic liquid
pretreatment, Carbohydr. Polym., 87 (2012) 2019–2023.
- H. Zhao, C.L. Jones, G.A. Baker, S. Xia, O. Olubajo, V.N. Person,
Regenerating cellulose from ionic liquids for an accelerated
enzymatic hydrolysis, J. Biotechnol., 139 (2009) 47–54.
- C. Ślusarczyk, B. Fryczkowska, M. Sieradzka, J. Janicki, Smallangle
X-ray scattering studies of pore structure in cellulose
membranes, Acta Phys. Pol. A, 129 (2016) 229–232.
- Å. Östlund, A. Idström, C. Olsson, P.T. Larsson, L. Nordstierna,
Modification of crystallinity and pore size distribution in
coagulated cellulose films, Cellulose, 20 (2013) 1657–1667.
- J. Guerrero-Contreras, F. Caballero-Briones, Graphene oxide
powders with different oxidation degree, prepared by synthesis
variations of the Hummers method, Mater. Chem. Phys., 153
(2015) 209–220.
- T. Ghosh, C. Biswas, J. Oh, G. Arabale, T. Hwang, N.D. Luong,
M. Jin, Y.H. Lee, J. Do Nam, Solution-processed graphite
membrane from reassembled graphene oxide, Chem. Mater., 24
(2012) 594–599.
- K.Y. Yoon, S.J. An, Y. Chen, J.H. Lee, S.L. Bryant, R.S. Ruoff,
C. Huh, K.P. Johnston, Graphene oxide nanoplatelet dispersions
in concentrated NaCl and stabilization of oil/water emulsions, J.
Colloid Interface Sci., 403 (2013) 1–6.
- J. Texter, Graphene dispersions, Curr. Opin. Colloid Interface
Sci., 19 (2014) 163–174.
- B. Konkena, S. Vasudevan, Understanding aqueous
dispersibility of graphene oxide and reduced graphene oxide
through p K a measurements, J. Phys. Chem. Lett., 3 (2012)
867–872.
- J.I. Parades, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón,
Graphene oxide dispersions in organic solvents, Langmuir, 24
(2008) 10560–10564.
- K. Goh, L. Setiawan, L. Wei, W. Jiang, R. Wang, Y. Chen,
Fabrication of novel functionalized multi-walled carbon
nanotube immobilized hollow fiber membranes for enhanced
performance in forward osmosis process, J. Membr. Sci., 446
(2013) 244–254.
- R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z.
Chowdhury, Carbon nanotube membranes for water
purification: a bright future in water desalination, Desalination,
336 (2014) 97–109.
- B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G.
Bachas, Aligned multiwalled carbon nanotube membranes.,
Science, 303 (2004) 62–65.
- E. Celik, H. Park, H. Choi, H. Choi, Carbon nanotube blended
polyethersulfone membranes for fouling control in water
treatment, Water Res., 45 (2011) 274–282.
- K.A. Mahmoud, B. Mansoor, A. Mansour, M. Khraisheh,
Functional graphene nanosheets: the next generation
membranes for water desalination, Desalination, 356 (2015)
208–225.
- Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration
membrane for water purification, Adv. Funct. Mater., 23 (2013)
3693–3700.
- R.K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla,
Y. Nishina, Graphene oxide: the new membrane material, Appl.
Mater. Today, 1 (2015) 1–12.
- L. He, L.F. Dumée, C. Feng, L. Velleman, R. Reis, F. She,
W. Gao, L. Kong, Promoted water transport across graphene
oxide–poly(amide) thin film composite membranes and their
antibacterial activity, Desalination, 365 (2015) 126–135.
- M.J. Park, S. Phuntsho, T. He, G.M. Nisola, L.D. Tijing, X.-M. Li,
G. Chen, W.-J. Chung, H.K. Shon, Graphene oxide incorporated
polysulfone substrate for the fabrication of flat-sheet thin-film
composite forward osmosis membranes, J. Membr. Sci., 493
(2015) 496–507.
- S. Xia, M. Ni, T. Zhu, Y. Zhao, N. Li, Ultrathin graphene oxide
nanosheet membranes with various d-spacing assembled using
the pressure-assisted filtration method for removing natural
organic matter, Desalination, 371 (2015) 78–87.
- A.F. Faria, C. Liu, M. Xie, F. Perreault, L.D. Nghiem, J. Ma,
M. Elimelech, Thin-film composite forward osmosis membranes
functionalized with graphene oxide–silver nanocomposites for
biofouling control, J. Membr. Sci., 525 (2017) 146–156.
- P.S. Goh, A.F. Ismail, Graphene-based nanomaterial: the stateof-
the-art material for cutting edge desalination technology,
Desalination, 356 (2015) 115–128.
- R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim,
Unimpeded permeation of water through helium-leak-tight
graphene-based membranes, Science, 335 (2012) 442–444.
- M. Bhadra, S. Roy, S. Mitra, Desalination across a graphene
oxide membrane via direct contact membrane distillation,
Desalination, 378 (2016) 37–43.
- T. Hwang, J.-S. Oh, W. Yim, J.-D. Nam, C. Bae, H.-I. Kim, K.J.
Kim, Ultrafiltration using graphene oxide surface-embedded
polysulfone membranes, Sep. Purif. Technol., 166 (2016) 41–47.
- G. Liu, H. Ye, A. Li, C. Zhu, H. Jiang, Y. Liu, K. Han, Y. Zhou,
Graphene oxide for high-efficiency separation membranes: role
of electrostatic interactions, Carbon N. Y., 110 (2016) 56–61.
- A. Kafy, A. Akther, M.I.R. Shishir, H.C. Kim, Y. Yun, J. Kim,
Cellulose nanocrystal/graphene oxide composite film as
humidity sensor, Sens. Actuators, A, 247 (2016) 221–226.
- C.J. Kim, W. Khan, D.H. Kim, K.S. Cho, S.Y. Park, Graphene
oxide/cellulose composite using NMMO monohydrate,
Carbohydr. Polym., 86 (2011) 903–909.
- C. Wan, J. Li, Graphene oxide/cellulose aerogels nanocomposite:
preparation, pyrolysis, and application for electromagnetic
interference shielding, Carbohydr. Polym., 150 (2016) 172–179.
- X. Zhang, H. Yu, H. Yang, Y. Wan, H. Hu, Z. Zhai, J. Qin,
Graphene oxide caged in cellulose microbeads for removal of
malachite green dye from aqueous solution, J. Colloid Interface
Sci., 437 (2015) 277–282.
- W. Zhu, W. Li, Y. He, T. Duan, In-situ biopreparation of
biocompatible bacterial cellulose/graphene oxide composites
pellets, Appl. Surf. Sci, 338 (2015) 22–26.
- X.N. Yang, D.D. Xue, J.Y. Li, M. Liu, S.R. Jia, L.Q. Chu, F. Wahid,
Y.M. Zhang, C. Zhong, Improvement of antimicrobial activity
of graphene oxide/bacterial cellulose nanocomposites through
the electrostatic modification, Carbohydr. Polym., 136 (2016)
1152–1160.
- X. Rui-Hong, R. Peng-Gang, H. Jian, R. Fang, R. Lian-Zhen,
S. Zhen-Feng, Preparation and properties of graphene oxideregenerated
cellulose/polyvinyl alcohol hydrogel with
pH-sensitive behavior, Carbohydr. Polym., 138 (2016) 222–228.
- L. Tang, X. Li, D. Du, C. He, Fabrication of multilayer films from
regenerated cellulose and graphene oxide through layer-by-layer
assembly, Prog. Nat. Sci. Mater. Int., 22 (2012) 341–346.
- W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide,
J. Am. Chem. Soc., 80 (1958) 1339–1339.
- K.M. Gupta, Z. Hu, J. Jiang, Mechanistic understanding of
interactions between cellulose and ionic liquids: a molecular
simulation study, Polymer (Guildf), 52 (2011) 5904–5911.
- Y. Cao, J. Wu, J. Zhang, H. Li, Y. Zhang, J. He, Room temperature
ionic liquids (RTILs): a new and versatile platform for cellulose
processing and derivatization, Chem. Eng. J. 147 (2009) 13–21.
- B. Fryczkowska, M. Sieradzka, E. Sarna, R. Fryczkowski,
J. Janicki, Influence of a graphene oxide additive and the
conditions of membrane formation on the morphology and
separative properties of poly(vinylidene fluoride) membranes,
J. Appl. Polym. Sci., 132 (2015) 42789.
- B. Fryczkowska, K. Wiechniak, Preparation and properties
of cellulose membranes with graphene oxide addition, Pol.
J. Chem. Technol., 19 (2017) 41–49.
- Y. Chen, F. Liu, Y. Wang, H. Lin, L. Han, A tight nanofiltration
membrane with multi-charged nanofilms for high rejection to
concentrated salts, J. Membr. Sci., 537 (2017) 407–415.
- Y. Zhang, S. Zhang, T.-S. Chung, Nanometric graphene oxide
framework membranes with enhanced heavy metal removal
via nanofiltration, Environ. Sci. Technol., 49 (2015) 10235–10242.
- B. Song, C. Zhang, G. Zeng, J. Gong, Y. Chang, Y. Jiang,
Antibacterial properties and mechanism of graphene oxidesilver
nanocomposites as bactericidal agents for water
disinfection, Arch. Biochem. Biophys., 604 (2016) 167–176.