References

  1. K. Barbusiński, H. Kościelniak, Influence of substrate loading intensity on floc size in activated sludge process, Water Res., 29 (1995) 1703–1710.
  2. H. Chua, P.H. Yu, S.N. Sin, K.N. Tan, Effect of food: microorganism ratio in activated sludge foam control, Appl. Biochem. Biotechnol., 84–86 (2000) 1127–1135.
  3. M. Henze, P. Harremoes, E. Arvin, J. Lacour, Wastewater Treatment, Biological and Chemical Processes, Springer-Verlag, Berlin, 2002.
  4. K.-U. Do, R.J. Banu, D.-H. Son, I.-T. Yeom, Influence of ferrous sulphate on thermochemical sludge disintegration and on performance of wastewater treatment in an anoxic/oxic MBR, Biochem. Eng. J., 66 (2012) 20–26.
  5. K.-U. Do, I.-T. Yeom, P. Arulazhagan, J.R. Banu, Effects of sludge pretreatment on sludge reduction in a lab-scale anaerobic/anoxic/oxic system treating domestic wastewater, Int. J. Environ. Sci. Technol., 10 (2013) 495–502.
  6. S.A. Dellana, D. West, Predictive modeling for wastewater applications: linear and nonlinear approaches, Environ. Modell. Software, 24 (2009) 96–106.
  7. H. Liu, M. Huang, C.K. Yoo, A fuzzy neural network-based soft sensor for modeling nutrient removal mechanism in fullscale wastewater treatment system, Desal. Wat. Treat., 51 (2013) 5184–5193.
  8. H. Boztopak, Y. Őzbay, D. Güçlü, M. Küçükhemek, Prediction of sludge volume index bulking using image analysis and neural network at full-scale activated sludge plant, Desal. Wat. Treat., 57 (2016) 17195–17205.
  9. B. Szeląg, P. Siwicki, Application of the Selected Classification Models to the Analysis of the Settling Capacity of the Activated Sludge – Case Study, B. Kaźmierczak, M. Kutyłowska, K. Piekarska, A. Trusz-Zdybek, E3S Web of Conferences, Vol. 17, Boguszów-Gorce, Poland, 2017, pp. 1–7.
  10. Y.S.T. Hong, R. Bhamidimarri, Evolutionary self-organising modelling of a municipal wastewater treatment plant, Water Res., 37 (2003) 1199–1212.
  11. D. Güçlü, Ş. Dursun, Artificial neural network modelling of a large-scale wastewater treatment plant operation, Bioprocess Biosyst. Eng., 33 (2010) 1051–1058.
  12. D. Ribeiro, A. Sanfins, O. Belo, ICDM’13 Proceedings of the 13th International Conference on Advance in Data Mining: Applications and Theoretical Aspects, Wastewater Treatment Plant Performance Prediction with Support Vector Machines, New York, 2013, pp. 99–111.
  13. K.-U. Do, R.J. Banu, S. Kaliappan, Y. Tae, Influence of the thermochemical sludge pretreatment on nitrification of A/O reactor removing phosphorus simultaneous precipitation, Biotechnol. Bioprocess Eng., 18 (2013) 313–320.
  14. K. Yetilmezsoy, Modeling Studies for the Determination of Completely Mixed Activated Sludge Reactor Volume: Steady- State, Empirical and ANN Applications, Q. Ashton, Advance in Machine Learning Research and Application, Atlanta, 2012, pp. 559–589.
  15. B. Szeląg, L. Bartkiewicz, J. Studziński, Black-box forecasting of selected indicator values for influent wastewater quality in municipal treatment plant, Environ. Prot., 38 (2016) 39–46 (in Polish).
  16. L. Jurik, T. Kaletova, M. Sedmakova, P. Balazova, A. Cervenanska, Comparison of service characteristics of two town’s WWTP, J. Ecol. Eng., 18 (2017) 61–67.
  17. D. Rousseau, F. Verdanck, D. Moerman, R. Carrette, C. Thoeye, J. Meirlaen, P.A. Venrolleghem, Development of a risk assessment based technique for design/retroffing WWTP, Water Sci. Technol., 43 (2001) 287–294.
  18. A. Verma, X. Wei, A. Kusiak, Predicting the total suspended solids in wastewater: a data-mining approach, Eng. Appl. Artif. Intell., 26 (2013) 1366–1372.
  19. A. Kusiak, H. Zheng, Z. Zhang, Virtual wind speed sensor for wind turbines, J. Energy Eng., 37 (2011) 59–69.
  20. B. Szeląg, J. Gawdzik, Assessment of the effect of wastewater quantity and quality, and sludge parameters on predictive abilities of non-linear models for activated sludge settleability predictions, Pol. Environ. Stud., 26 (2017) 315–322.
  21. L. Bartkiewicz, B. Szeląg, J. Studziński, Impact assessment of input variables and ANN model structure on forecasting wastewater inflow into sewage treatment plants, Environ. Prot., 38 (2016) 29–36 (in Polish).
  22. L. Rutkowski, Artificial Intelligence Methods and Techniques: Computational Intelligence, PWN, Warszawa, 2006 (in Polish).
  23. S. Ossowski, Neural Networks for Information Processing, Publishing House of the Warsaw University of Technology, Warszawa, 2013.
  24. H.R. Maier, A. Jain, G.C. Dandy, K.P. Sudheer, Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions, Environ. Modell. Software, 25 (2010) 891–909.
  25. I. Lou, Y. Zhao, Sludge bulking prediction using principle component regression and artificial neural network, Math. Prob. Eng., 2012 (2012) 1–17.
  26. G. Capizzi, G.L. Sciuto, P. Monforte, C. Napoli, Cascade feed forward neural network-based model for air pollutants evaluation of single monitoring stations in urban areas, Int. J. Electron. Telecommun., 61 (2015) 327–332.
  27. M.S. Al-batah, M.S. Alkhasawneh, L.T. Tay, U.K. Ngah, H.H. Lateh, N.A.M. Isa, Landslide occurrence prediction using trainable cascade forward network and multilayer perceptron, Math. Prob. Eng., 2015 (2015) 1–9.
  28. V. Vapnik, Statistical Learning Theory, John Wiley and Sons, New York, 1998.
  29. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, U. Fayyad, Knowledge Discovery and Data Mining, Kluwer, 1998, pp. 1–43.
  30. J.H. Friedman, Stochastic gradient boosted, Comput. Stat. Data Anal., 38 (2002) 367–378.
  31. H.Z. Abyaneh, Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters, J. Environ. Health Sci., 12 (2014) 1–8.
  32. K. Minsoo, K. Yejin, K. Hyosoo, P. Wenhua, K. Changwon, Evaluation of the k-nearest neighbour method for forecasting the influent characteristics of wastewater treatment plant, Front. Environ. Sci. Eng., 10 (2016) 299–310.
  33. E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand, Environ. Prog., 27 (2008) 439–446.
  34. R. Rustum, Modelling Activated Sludge Wastewater Treatment Plants Using Artificial Intelligence Techniques (Fuzzy Logic and Neural Networks), Doctor of Philosophy, Heriot, 2009.