References

  1. M. Smol, M. Włodarczyk-Makuła, B. Skowron-Grabowska, PAHs removal from municipal landfill leachate using an integrated membrane system in aspect of legal regulations, Desal. Wat. Treat., 69 (2017) 335–343.
  2. M. Smol, M. Włodarczyk-Makuła, Effectiveness in the removal of organic compounds from municipal landfill leachate in integrated membrane systems: coagulation – NF/RO, Polycyclic Aromat. Compd., 37 (2017) 456–474.
  3. R. Nowak, M. Włodarczyk-Makuła, E. Wiśniowska, K. Grabczak, The comparison of the effectiveness of pre-treatment processes of landfill leachate, Annu. Set Environ. Protect., 18 (2016) 122–133.
  4. M. Smol, M. Włodarczyk-Makuła, K. Mielczarek, J. Bohdziewicz, D. Włóka, The Use of Reverse Osmosis in the Removal of PAHs from Municipal Landfill Leachate, Polycyclic Aromat. Comp., 36 (2016) 20–39.
  5. M. Włodarczyk-Makuła, Physical and Chemical Fates of Organic Micropollutants, September 2015, Edition: IPublisher: Scholar Press, OmniScriptum GmbH & Co. KG, Saarbrucken, Germany. ISBN: 978-3-639-85930-0.
  6. K. Pochwat, D. Słyś, S. Kordana, The temporal variability of a rainfall synthetic hyetograph for the dimensioning of stormwater retention tanks in small urban catchments, J. Hydrol., 549 (2017) 501–511.
  7. D. Gao, Z. Wen, Phthalate esters in the environment. A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes, Sci. Total Environ., 541 (2016) 981–1001.
  8. C.R. Klauck, A. Giacobbo, C.G. Altenhofen, L.B. Silva, A. Meneguzzi, A.M. Bernardes, M.A.S. Rodrigues, Toxicity elimination of landfill leachate by hybrid processing of advanced oxidation process and adsorption, Environ. Technol. Innovation, 8 (2017) 246–255.
  9. F.N. Ahmed, C.Q. Lan, Treatment of landfill leachate using membrane bioreactors: a review, Desalination, 287 (2012) 41–54.
  10. Y. Peng, Perspectives on technology for landfill leachate treatment, Arab. J. Chem., 10 (2017) S2567–S2574.
  11. M. Kida, P. Koszelnik, Environmental fate of selected micropollutants, J. Civ. Eng. Environ. Archit., 62 (2015) 279–298.
  12. K. Pochwat, Hydraulic analysis of functioning of the drainage channel with increased retention capacity, E3S Web Conf., 17 (2017) 00075.
  13. L. Bartoszek, P. Koszelnik, R. Gruca-Rokosz, M. Kida, Assessment of agricultural use of the bottom sediments from eutrophic Rzeszów reservoir, Rocz. Ochr. Sr., 17 (2015) 396–409.
  14. J. Naumczyk, I. Prokurat, P. Marcinowski, Landfill leachates treatment by H2O2/UV, O3/H2O2, modified Fenton, and modified photo-Fenton methods, Int. J. Photoenergy, 2012 (2012) ID909157.
  15. M. Kida, S. Ziembowicz, P. Koszelnik, Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process, Sep. Purif. Technol., 192 (2018) 457–464.
  16. M. Kida, S. Książek, P. Koszelnik, Preliminary studies on removal of dibutyl phthalate from aqueous solutions using ultrasound, Inż. Ekol., 48 (2016) 233–238.
  17. M. Matouq, Z. Al-Anber, N. Susumu, T. Tagawa, H. Karapanagioti, The kinetic of dyes degradation resulted from food industry in wastewater using high frequency of ultrasound, Sep. Purif. Technol., 135 (2014) 42–47.
  18. T. Campbell, M.R. Hoffmann, Sonochemical degradation of perfluorinated surfactants: power and multiple frequency effects, Sep. Purif. Technol., 156 (2015) 1019–1027.
  19. P. Mandal, B.K. Dubey, A.K. Gupta, Review on landfill leachate treatment by electrochemical oxidation: drawbacks, challenges and future scope, Waste Manage., 67 (2017) 250–273.
  20. US-EPA, US Environmental Protection Agency–USEPA. Endocrine Disruptor Screening Program, Universe of Chemicals for Potential Endocrine Disruptor Screening and Testing, 2012, 176 p. Available at: https://www.epa.gov/endocrine-disruption (Accessed 30 October 2017).
  21. P. Kjeldsen, M.A. Barlaz, A.P. Rooker, A. Baun, A. Ledin, T.H. Christensen, Present and long-term composition of MSW landfill leachate: a review, Crit. Rev. Environ. Sci. Technol., 32 (2002) 297–336.
  22. C. Pétrier, The Use of Power Ultrasound for Water Treatment, Power Ultrasonics, Woodhead Publishing, Oxford, 31 (2015) 939–972.
  23. L.J. Xu, W. Chu, N. Graham, A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process, Ultrason. Sonochem., 20 (2013) 892–899.
  24. Q.P. Isariebel, J.L. Carine, J.H. Ulises-Javier, W. Anne-Marie, D. Henri, Sonolysis of levodopa and paracetamol in aqueous solutions, Ultrason. Sonochem., 16 (2009) 610–616.
  25. E. Villaroel, J. Silva-Agredo, C. Petrier, G. Taborda, R.A. Torres- Palma, Ultrasonic degradation of acetaminophen in water: effect of sonochemical parameters and water matrix, Ultrason. Sonochem., 21 (2014) 1763–1769.
  26. Y. Jiang, C. Pétrier, T.D. Waite, Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution, Ultrason. Sonochem., 9 (2002) 163–168.
  27. L. Rizzo, Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment, Water Res., 45 (2011) 4311–4340.
  28. M. Lim, Y. Son, J. Khim, The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A, Ultrason. Sonochem., 21 (2014) 1976–1981.
  29. A. Kwarciak-Kozłowska, A. Krzywicka, Effect of ultrasonic field to increase the biodegradability of coke processing wastewater, Arch. Waste Manage. Environ. Prot., 17 (2015) 133–142.
  30. C. Pétrier, R. Torres-Palma, E. Combet, G. Sarantakos, S. Baup, C. Pulgarin, Enhanced sonochemical degradation of bisphenol-A by bicarbonate ions, Ultrason. Sonochem., 17 (2010) 111–115.