References

  1. M.A. Ajeel, M.K. Aroua, W.M.A.W. Daud, S.A. Mazari, Effect of adsorption and passivation phenomena on the electrochemical oxidation of phenol and 2‑chlorophenol at carbon black diamond composite electrode, Ind. Eng. Chem. Res., 56 (2017) 1652–1660.
  2. W. Kujawski, A. Warszawski, W. Ratajczak, Removal of phenol from wastewater by different separation techniques, Desalination, 163 (2004) 287–296.
  3. J. Chen, L. Zhang, Q. Jin, C.Z. Su, L. Zhao, X.X. Liu, S.M. Kou, Y.J. Wang, M. Xiao, Bioremediation of phenol in soil through using a mobile plant-endophyte system, Chemosphere, 182 (2017) 194–202.
  4. M. Pérez, F. Torrades, Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions, Appl. Catal., B, 36 (2002) 63–74.
  5. A.M. Amat, A. Arques, F. López, M.A. Miranda, Solar photocatalysis to remove paper mill wastewater pollutants, Solar Energy, 79 (2005) 393–401.
  6. O. Abdelwahaba, N.K. Amin, E.-S.Z. El-Ashtoukhy, Electrochemical removal of phenol from oil refinery wastewater, J. Hazard. Mater., 163 (2009) 711–716.
  7. X.P. Zhu, J.R. Ni, J.J. Wei, X.A. Xing, H.N. Li, Y. Jiang, Scale-up of B-doped diamond anode system for electrochemical oxidation of phenol simulated wastewater in batch mode, J. Hazard. Mater., 184 (2010) 493–498.
  8. J.J. Wei, X.P. Zhu, J.R. Ni, Electrochemical oxidation of phenol at boron-doped diamond electrode in pulse current mode, Electrochim. Acta, 56 (2011) 5310–5315.
  9. E. Fockedey, A.V. Lierde, Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes, Water Res., 36 (2002) 4169–4175.
  10. A.F. Ismail, L.I.B. David, A review on the latest development of carbon membranes for gas separation, J. Membr. Sci., 193 (2001) 1–18.
  11. Y.J. Fu, C.C. Hu, D.W. Lin, H.A. Tsai, S.H. Huang, W.S. Hung, K.R. Lee, J.Y. Lai, Adjustable microstructure carbon molecular sieve membranes derived from thermally stable polyetherimide/polyimide blends for gas separation, Carbon, 113 (2017) 10–17.
  12. F. Ran, K.W. Shen, Y.T. Tan, B.W. Peng, S.H. Chen, W.J. Zhang, X.Q. Niu, L.B. Kong, L. Kang, Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors, J. Membr. Sci., 514 (2016) 366–375.
  13. X.P. Chen, H. Wang, Y. Yang, B.Q. He, J.X. Li, T.H. Wang, The surface modification of coal-based carbon membranes by different acids, Desal. Wat. Treat., 51 (2013) 5855–5862.
  14. G.T. Qin, X.F. Cao, H. Wen, W. Wei, C. João, D. Costa, Fine ultramicropore control using the intrinsic viscosity of precursors for high performance carbon molecular sieve membranes, Sep. Purif. Technol., 177 (2017) 129–134.
  15. H. Wang, Q.Q. Guan, J.X. Li, T.H. Wang, Phenolic wastewater treatment by an electrocatalytic membrane reactor, Catal. Today, 6 (2014) 121–126.
  16. Y. Yang, J.X. Li, H. Wang, X.K. Song, T.W. Wang, B.Q. He, X.P. Liang, H.H. Ngo, An electrocatalytic membrane reactor with self-cleaning function for industrial wastewater treatment, Angew. Chem. Int. Ed., 50 (2011) 2148–2150.
  17. Y. Yang, H. Wang, J.X. Li, B.Q. He, T.H. Wang, S. Liao, Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment, Environ. Sci. Technol., 46 (2012) 6815–6821.
  18. Y.F. Ling, H.L. Xu, X.M. Chen, Continuous multi-cell electrochemical reactor for pollutant oxidation, Chem. Eng. Sci., 122 (2015) 630–636.
  19. C. Wang, F. Meng, T.H. Wang, T.L. Ma, J.S. Qiu, Monolithic coal-based carbon counter electrodes for highly efficient dyesensitized solar cells, Carbon, 67 (2014) 465–474.
  20. B. Wang, W. Kong, H. Ma, Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode, J. Hazard. Mater., 146 (2007) 295–301.
  21. C.H. Lee, E.S. Lee, Y.K. Lim, K.H. Park, H.D. Park, D.S. Lim, Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode, RSC Adv., 7 (2017) 6229–6235.
  22. Y. Huang, H.J. Yan, Y.J. Tong, Electrocatalytic determination of reduced glutathione using rutin as a mediator at acetylene black spiked carbon paste electrode, J. Electroanal. Chem., 743 (2015) 25–30.
  23. J. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Modern strategies in electroorganic synthesis, Chem. Rev., 108 (2008) 2265–2299.
  24. B.A. Frontana-Uribe, R.D. Little, J.G. Ibanez, A. Palma, R. Vasquez-Medrano, Organic electrosynthesis: a promising green methodology in organic chemistry, Green Chem., 12 (2010) 2099–2119.
  25. E.S. Takeuchi, R.W. Murray, Metalloporphyrin containing carbon paste electrodes, J. Electroanal. Chem. Interfacial Electrochem., 189 (1985) 49–57.
  26. J.H. Li, J. Li, H.B. Feng, Y.Q. Zhang, J.B. Jiang, Y.L. Feng, M.S. Chen, D. Qian, A facile one-step in situ synthesis of copper nanostructures/graphene oxide as an efficient electrocatalyst for 2-naphthol sensing application, Electrochim. Acta, 153 (2015) 352–360.
  27. K.N. Kuo, R.W. Murray, Electrocatalysis with ferrocyanide electrostatically trapped in an alkylaminesiloxane polymer film on a Pt electrode, J. Electroanal. Chem. Interfacial Electrochem., 131 (1982) 37–59.
  28. M.C.V. Vela, S.Á. Blanco, J.L. García, E.B. Rodríguez, Application of a dynamic model for predicting flux decline in crossflow ultrafiltration, Desalination, 198 (2006) 303–309.
  29. Y.Y. Chu, W.J. Wang, M. Wang, Anodic oxidation process for the degradation of 2, 4-dichlorophenol in aqueous solution and the enhancement of biodegradability, J. Hazard. Mater., 180 (2010) 247–252.
  30. S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review, J. Environ. Manage., 90 (2009) 1336–1349.
  31. K. Mohanty, D. Das, M.N. Biswas, Adsorption of phenol from aqueous solutions using activated carbons prepared from tectona grandis sawdust by ZnCl2 activation, Chem. Eng. J., 115 (2005) 121–131.
  32. Q. Liao, J. Sun, L. Gao, The adsorption of resorcinol from water using multi-walled carbon nanotubes, Colloids Surf., A, 312 (2008) 160–165.
  33. Y.J. Shen, L.C. Lei, X.W. Zhang, M.G. Zhou, Y. Zhang, Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges, J. Hazard. Mater., 150 (2008) 713–722.