References
- J. Li, China gears up to tackle tainted water, Nature, 499 (2013)
14–15.
- Z. Xu, G.D. Gao, B.C. Pan, A new combined process for efficient
removal of Cu(II) organic complexes from wastewater: Fe(III)
displacement/UV degradation/alkaline precipitation, Water
Res., 87 (2015) 378–384.
- M. Solís, A. Solís, H.I. Pérez, Microbial decolorization of azo
dyes: a review. Process Biochem., 47 (2012) 1723–1748.
- L.C. Fang, P. Cai, P.X. Li, Microcalorimetric and potentiometric
titration studies on the adsorption of copper by P. putida and
B. thuringiensis and their composites with minerals, J. Hazard.
Mater., 181 (2010) 1031–1038.
- P.K. Rai, Heavy metal pollution in aquatic ecosystems and its
phytoremediation using wetland plants: an ecosustainable
approach, Int. J. Phytorem., 10 (2008) 133–160.
- R.P. Chen, Y.L. Zhang, L.F. Shen, Lead (II) and methylene
blue removal using a fully biodegradable hydrogel based
on starch immobilized humic acid, Chem. Eng. J., 268 (2015)
348–355.
- M. Hunsom, K. Pruksathorn, S. Damronglerd, H. Vergnes,
P. Duverneuil, Electrochemical treatment of heavy metals (Cu2+,
Cr6+, Ni2+) from industrial effluent and modeling of copper
reduction, Water Res., 39 (2005) 610–616.
- C.D. Shuang, P.H. Li, A.M. Li, Quaternized magnetic
microspheres for the efficient removal of reactive dyes, Water
Res., 46 (2012) 4417–4426.
- G.S. Simate, S.E. Iyuke, S. Ndlovu, The heterogeneous coagulation
and flocculation of brewery wastewater using carbon nanotubes,
Water Res., 4 (2012) 1185–1197.
- S. Anandan, P.S. Kumar, N. Pugazhenthiran, Effect of loaded
silver nanoparticles on TiO2 for photocatalytic degradation of
acid red 88, Sol. Energy Mater. Sol. Cells, 92 (2008) 929–937.
- L. Yu, W.W. Li, M.H.W. Lam, Isolation and characterization of
a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic
reduction and bio-hydrogen production, Appl. Microbiol.
Biotechnol., 95 (2012) 255–262.
- A. Özcan, M. Gençten, Investigation of acid red 88 oxidation in
water by means of electro-Fenton method for water purification,
Chemosphere, 146 (2016) 245–252.
- T. Robinson, B. Chandran, P. Nigam, Effect of pretreatments of
three waste residues, wheat straw, corncobs and barley husks
on dye adsorption, Bioresour. Technol., 85 (2002) 119–124.
- N.K. Srivastava, C.B. Majumder, Novel biofiltration methods
for the treatment of heavy metals from industrial wastewater,
J. Hazard. Mater., 151 (2008) 1–8.
- S. Hsu, P.C. Singer, Removal of bromide and natural organic
matter by anion exchange, Water Res., 44 (2010) 2133–2140.
- F. Ferrero, Adsorption of methylene blue on magnesium silicate:
kinetics, equilibria and comparison with other adsorbents,
J. Environ. Sci., 22 (2010) 467–473.
- Q. Huang, M.Y. Liu, J.Y. Chen, Facile preparation of MoS2 based
polymer composites via mussel inspired chemistry and their
high efficiency for removal of organic dyes, Appl. Surf. Sci., 419
(2017) 35–44.
- M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption
of methylene blue on low-cost sorbents: a review, J. Hazard.
Mater., 177 (2010) 70–80.
- B.H. Hameed, A.T.M. Din, A.L. Ahmad, Sorption of methylene
blue onto bamboo-based activated carbon: kinetics and
equilibrium studies, J. Hazard. Mater., 141 (2007) 819–825.
- R. Jiang, Y.Q. Fu, H.Y. Zhu, Removal of methyl orange
from aqueous solutions by magnetic maghemite/chitosan
nanocomposite films: adsorption kinetics and equilibrium,
J. Appl. Polym. Sci., 125 (2012) 540–549.
- G. Crini, Studies on adsorption of dyes on beta-cyclodextrin
polymer, Bioresour. Technol., 90 (2003) 193–198.
- D.D. Asouhidou, K.S. Triantafyllidis, N.K. Lazaridis, Adsorption
of Remazol Red 3BS from aqueous solutions using APTES- and
cyclodextrin-modified HMS-type mesoporous silicas, Colloids
Surf., A, 346 (2009) 83–90.
- J. Lin, Y. Zhan, Adsorption of humic acid from aqueous solution
onto unmodified and surfactant-modified chitosan/zeolite
composites, Chem. Eng. J., 200 (2012) 202–213.
- T.S. Anirudhan, C.D. Bringle, S. Rijith, Removal of uranium(VI)
from aqueous solutions and nuclear industry effluents using
humic acid-immobilized zirconium-pillared clay, Desal. Wat.
Treat., 12 (2009) 16–27.
- J. Hizal, R. Apak, Modeling of cadmium(II) adsorption on
kaolinite-based clays in the absence and presence of humic acid,
Appl. Clay Sci., 32 (2006) 232–244.
- L. Carlos, M. Cipollone, D.B. Soria, The effect of humic acid
binding to magnetic nanoparticles on the photogeneration of
reactive oxygen species, Sep. Purif. Technol., 91 (2012) 23–29.
- H. Yang, B. Yuan, Y.B. Lu, R.S. Cheng, Preparation of magnetic
chitosan microspheres and its applications in wastewater
treatment, Sci. China, Ser. B, 52 (2009) 249–256.
- Y.X. Huang, A. Keller Arturo, EDTA functionalized magnetic
nanoparticle sorbents for cadmium and lead contaminated
water treatment, Water Res., 80 (2015) 159–168.
- R.P. Chen, Y.L. Zhang, X.Y. Wang, Removal of methylene blue
from aqueous solution using humic-acid coated magnetic
nanoparticles, Desal. Wat. Treat., 55 (2015) 539–548.
- W.P. Liu, J.Q. Ma, C.S. Shen, A pH-responsive and magnetically
separable dynamic system for efficient removal of highly dilute
antibiotics in water, Water Res., 90 (2016) 24–33.
- J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic
nanoparticles with humic acid for high efficient removal
of heavy metals in water, Environ. Sci. Technol., 42 (2008)
6949–6954.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1402.
- H.M.F. Freundlich, Ueber die Adsorption in Loesungen,
Z. Phys. Chem., 57 (1906) 385–470.
- H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and
thermodynamics of cadmium ion removal by adsorption onto
nanozerovalent iron particles, J. Hazard. Mater., 186 (2011)
458–465.
- J. Dai, H. Yan, H. Yang, Simple method for preparation of
chitosan/poly(acrylic acid) blending hydrogel beads and
adsorption of copper(II) from aqueous solutions, Chem. Eng. J.,
165 (2010) 240–249.
- H. Yan, H.J. Li, X. Tao, Rapid removal and separation of Iron(II)
and manganese(II) from micropolluted water using magnetic
grapheme oxide, ACS Appl. Mater. Interfaces, 6 (2014)
9871–9880.
- R.A. Alvarez-Puebla, J.J. Garrido, Effect of pH on the aggregation
of a gray humic acid in colloidal and solid states, Chemosphere,
59 (2005) 659–667.
- S.T. Yang, P.F. Zong, X.M. Ren, Rapid and high-efficient
preconcentration of Eu by core-shell structured Fe3O4@humic
acid magnetic nanoparticles, ACS Appl. Mater. Interfaces, 12
(2012) 6890–6899.
- E. Illes, E. Tombacz, The effect of humic acid adsorption on
pH-dependent surface charging and aggregation of magnetite
nanoparticles, J. Colloid Interface Sci., 295 (2006) 115–123.