References

  1. J.A.B. Mandal, Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent, J. Hazard. Mater., 168 (2009) 633–640.
  2. H. Kalvathy, B. Karthik, L.R. Miranda, Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: batch and column studies, Colloids Surf., B, 78 (2010) 291–302.
  3. Y.F. Lam, L.Y. Lee, S.J. Chua, S.S. Lim, S. Gan, Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent, Ecotoxicol. Environ. Saf., 127 (2016) 61–70.
  4. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  5. A.K. Bhattacharya, S.N. Mandal, S.K. Das, Adsorption of Zn from aqueous solution by using different adsorbents, Chem. Eng. J., 123 (2006) 43–51.
  6. M.N. Siddiqui, H.H. Redhwi, A.A. AlSaadi, M. Rajeh, T.A. Saleh, Kinetic and computational evaluation of activated carbon produced from rubber tires toward the adsorption of nickel in aqueous solutions, Desal. Wat. Treat., 57 (2016) 17570–17578.
  7. D. Mohan, K.P. Singh, Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste, Water Res., 36 (2002) 2304–2318.
  8. G. Wang, A. Li, M. Li, Sorption of nickel ions from aqueous solutions using activated carbon derived from walnut shell waste, Desal. Wat. Treat., 16 (2010) 282–289.
  9. U. Kouakou, A.S. Ello, J.A. Yapo, A. Trokourey, Adsorption of iron and zinc on commercial activated carbon, J. Environ. Chem. Ecotoxicol., 5 (2013) 168–171.
  10. H. Marsh, F.R. Reinoso, Activated Carbon, Elsevier Science and Technology Books, London, 2006.
  11. C. Kirbiyik, A.E. Putun, E. Putun, Comparative studies on adsorptive removal of heavy metal ions by biosorbent, biochar, and activated carbon obtained from low cost agro-residue, Water Sci. Technol., 73 (2016) 423–436.
  12. J. Lach, E. Okoniewska, L. Stępniak, A. Ociepa-Kubicka, The influence of modification of activated carbon on adsorption of Ni(II) and Cd(II), Desal. Wat. Treat., 52 (2014) 3979–3986.
  13. P.C. Mishra, R.K. Patel, Removal of lead and zinc ions from water by low cost adsorbents, J. Hazard. Mater., 168 (2009) 319–325.
  14. G. Jin, Y. Eom, T.G. Lee, Removal of Hg from aquatic environments using activated carbon impregnated with humic acid, J. Ind. Eng. Chem., 42 (2016) 46–52.
  15. N. Esfandiar, B. Nasernejad, T. Ebadi, Removal of Mn from groundwater by sugarcane bagasse and activated carbon (a comparative study): application of response surface methodology (RSM), J. Ind. Eng. Chem. Res., 20 (2014) 3726–3736.
  16. W. Daoud, T. Ebadi, A. Fahimifar, Regeneration of acidmodified activated carbon used for removal of toxic metal hexavalent chromium from aqueous solution by electro kinetic process, Desal. Wat. Treat., 57 (2016) 7009–7020.
  17. P.G. Gonzalez, Y.B. Pliego-Cuervo, Adsorption of Cd(II), Hg(II) and Zn(II) from aqueous solution using mesoporous activated carbon produced from Bambusa vulgaris striata, Chem. Eng. Res. Des., 92 (2014) 2715–2724.
  18. O.S. Amuda, A.A. Giwa, I.A. Bello, Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, Biochem. Eng. J., 36 (2007) 174–181.
  19. B. Saha, M.H. Tai, M. Streat, Metal sorption performance of an activated carbon after oxidation and subsequent treatment, Process Saf. Environ. Prot., 79 (2001) 345–351.
  20. S.A. Haladu, A.M. Muhammad, T.A. Saleh, S.A. Ali, Synthesis of novel cross-linked cyclopolymer bearing polyzwitteriondianionic moieties and its sorption efficiency for Ni(II) removal from waters, Chem. Eng. Res. Des., 106 (2016) 337–346.
  21. L. Gonsalvesh, S.P. Marinov, G. Gryglewicz, R. Carleer, J. Yperman, Preparation, characterization and application of polystyrene based activated carbons for Ni removal from aqueous solution, Fuel Process. Technol., 149 (2016) 75–85.
  22. A. Damaj, G.M. Ayoub, M. Al-Hindi, H. El Rassy, Activated carbon prepared from crushed pine needles used for the removal of Ni and Cd, Desal. Wat. Treat., 53 (2015) 3371–3380.
  23. M. Ugurlu, I. Kula, M.H. Karaoglu, Y. Arslan, Removal of Ni ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation, Environ. Prog. Sustain. Energy, 28 (2009) 547–557.
  24. M. Machida, M. Aikawa, H. Tatsumoto, Prediction of simultaneous adsorption of Cu and Pb onto activated carbon by conventional Langmuir type equations, J. Hazard. Mater., 120 (2005) 271–275.
  25. B. Channarong, S.H. Lee, R. Bade, O.V. Shipin, Simultaneous removal of nickel and zinc from aqueous solution by micellarenhanced ultrafilteration and activated carbon fiber hybrid process, Desalination, 262 (2010) 221–227.
  26. A.R. Gavaskar, Design and construction techniques for permeable reactive barriers, J. Hazard. Mater., 68 (1999) 41–71.
  27. Y. Liu, H. Mou, L. Chen, Z.A. Mirza, L. Liu, Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: environmental factors and effectiveness, J. Hazard. Mater., 298 (2015) 83–90.
  28. O. Gibert, T. Rotting, J.L. Cortina, J. de Pablo, C. Ayora, J. Carrera, J. Bolzicco, In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcóllar spill (SW Spain), J. Hazard. Mater., 191 (2011) 287–295.
  29. K. Sasaki, D.W. Blowes, C.J. Ptacek, W.D. Gould, Immobilization of Se(VI) in mine drainage by permeable reactive barriers: column performance, Appl. Geochem., 23 (2008) 1012–1022.
  30. T.F. Guerin, S. Horner, T. McGovern, B. Davey, An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater, Water Res., 36 (2002) 15–24.
  31. S.H. Lee, H.Y. Jo, S.T. Yun, Y.J. Lee, Evaluation of factors affecting performance of a zeolitic rock barrier to remove zinc from water, J. Hazard. Mater., 175 (2010) 224–234.
  32. K. Komnitsas, G. Bartzas, I. Paspaliaris, Efficiency of limestone and red mud barriers: laboratory column studies, Miner. Eng., 17 (2004) 183–194.
  33. K. Komnitsas, G. Bartzas, I. Paspaliaris, Modeling of reaction front progress in fly ash permeable reactive barriers, Environ. Forensics, 7 (2006) 219–231.
  34. K. Komnitsas, G. Bartzas, I. Paspaliaris, Inorganic contaminant fate assessment in zero-valent iron treatment walls, Environ. Forensics, 7 (2006) 207–217.
  35. G. Bartzas, K. Komnitsas, Solid phase studies and geochemical modelling of low-cost permeable reactive barriers, J. Hazard. Mater., 183 (2010) 301–308.
  36. K. Komnitsas, G. Bazdanis, G. Bartzas, E. Sahinkaya, D. Zaharaki, Removal of heavy metals from leachates using organic/inorganic permeable reactive barriers, Desal. Wat. Treat., 51 (2013) 3052–3059.
  37. D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
  38. R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermo dynamic, mechanism and economic analysis, Ecol. Eng., 91 (2016) 317–332.
  39. T. Depci, A.R. Kul, Y. Onal, Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: study in single- and multi-solute systems, Chem. Eng. J., 200–202 (2012) 224–236.
  40. N. Balasubramanian, T. Kojima, C. Srinivasakannan, Arsenic removal through electro coagulation: kinetic and statistical modeling, Chem. Eng. J., 155 (2009) 76–82.
  41. H. Xiyili, S. Cetintas, D. Bingol, Removal of some heavy metals onto mechanically activated fly ash: modeling approach for optimization, isotherms, kinetics and thermodynamics, Process Saf. Environ. Prot., 109 (2017) 288–300.
  42. J.J. Moreno-Barbosa, C. Lopez-Velandia, A. del Pilar Maldonado, L. Giraldo, J.C. Moreno-Pirajan, Removal of lead(II) and zinc(II) ions from aqueous solutions by adsorption onto activated carbon synthesized from watermelon shell and walnut shell, Adsorption, 19 (2013) 675–685.
  43. R.C. Bansal, M. Goyal, Activated Carbon Adsorption, Taylor & Francis, London, 2005.
  44. K. Komnitsas, D. Zaharaki, G. Bartzas, G. Kaliakatsou, A. Kritikaki, Efficiency of pecan shells and sawdust biochar on Pb and Cu adsorption, Desal. Wat. Treat., 57 (2016) 3237–3246.
  45. K. Komnitsas, D. Zaharaki, I. Pyliotis, D. Vamvuka, G. Bartzas, Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals, Waste Biomass Valorization, 6 (2015) 805–816.
  46. F. Wang, Y. Pan, P. Cai, T. Guo, H. Xiao, Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent, Bioresour. Technol., 241 (2017) 482–490.
  47. B. Tiemeyer, N. Ptaffner, S. Frank, K. Kaiser, S. Fiedler, Pore water velocity and ionic strength effects on DOC release from peat-sand mixtures: results from laboratory and field experiments, Geoderma, 296 (2017) 86–97.
  48. M. Ehtiat, S.J. Mousavi, R. Srinivasan, Groundwater modeling under variable operating conditions using SWAT, MODFLOW and MT3DMS: a catchment scale approach to water resources management, Water Resour. Manage., 32 (2018) 1631–1649.
  49. E. Bozau, S. Haubler, W.V. Berk, Hydrogeochemical modeling of corrosion effects and barite scaling in deep geothermal wells of the North German Basin using PHREEQC and PHAST, Geothermics, 53 (2015) 540–547.