References

  1. D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review, Bioresour. Technol., 99 (2008) 6017–6027.
  2. S. Yin, Y. Wu, W. Xu, Y. Li, Z. Shen, C. Feng, Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary, Chemosphere, 155 (2016) 564–572.
  3. F. Wang, X. Lu, X.-y. Li, Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery, J. Hazard. Mater., 308 (2016) 75–83.
  4. H. Sone, B. Fugetsu, S. Tanaka, Selective elimination of lead(II) ions by alginate/polyurethane composite foams, J. Hazard. Mater., 162 (2009) 423–429.
  5. M. Bilal, J.A. Shah, T. Ashfaq, S.M.H. Gardazi, A.A. Tahir, A. Pervez, H. Haroon, Q. Mahmood, Waste biomass adsorbents for copper removal from industrial wastewater – a review, J. Hazard. Mater., 263, (2013) 322–333.
  6. S.W. Won, P. Kotte, W. Wei, A. Lim, Y.-S. Yun, Biosorbents for recovery of precious metals, Bioresour. Technol., 160 (2014) 203–212.
  7. J. Febrianto, A.N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater., 162 (2009) 616–645.
  8. J.J. Moreno-Barbosa, C. López-Velandia, A.d.P. Maldonado, L. Giraldo, J.C. Moreno-Piraján, Removal of lead(II) and zinc(II) ions from aqueous solutions by adsorption onto activated carbon synthesized from watermelon shell and walnut shell, Adsorption, 19 (2013) 675–685.
  9. F.Y. Wang, H. Wang, J.W. Ma, Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent – bamboo charcoal, J. Hazard. Mater., 177 (2010) 300–306.
  10. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  11. T. Zhang, X. Zhu, L. Shi, J. Li, S. Li, J. Lü, Y. Li, Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals, Bioresour. Technol., 235 (2017) 185–192.
  12. Z. Wang, G. Liu, H. Zheng, F. Li, H.H. Ngo, W. Guo, C. Liu, L. Chen, B. Xing, Investigating the mechanisms of biochar’s removal of lead from solution, Bioresour. Technol., 177 (2015) 308–317.
  13. H. Demiral, C. Güngör, Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse, J. Cleaner Prod., 124 (2016) 103–113.
  14. R. Chand, K. Narimura, H. Kawakita, K. Ohto, T. Watari, K. Inoue, Grape waste as a biosorbent for removing Cr(VI) from aqueous solution, J. Hazard. Mater., 163 (2009) 245–250.
  15. C. Escudero, C. Gabaldón, P. Marzal, I. Villaescusa, Effect of EDTA on divalent metal adsorption onto grape stalk and exhausted coffee wastes, J. Hazard. Mater., 152 (2008) 476–485.
  16. M. Erdem, R. Orhan, M. Şahin, E. Aydın, Preparation and characterization of a novel activated carbon from vine shoots by ZnCl2 activation and investigation of its rifampicine removal capability, Water, Air, Soil Pollut., 227 (2016) 226.
  17. M. Ruiz-Fernández, M. Alexandre-Franco, C. Fernández-González, V. Gómez-Serrano, Development of activated carbon from vine shoots by physical and chemical activation methods. Some insight into activation mechanisms, Adsorption, 17 (2011) 621–629.
  18. M. Hejazifar, S. Azizian, H. Sarikhani, Q. Li, D. Zhao, Microwave assisted preparation of efficient activated carbon from grapevine rhytidome for the removal of methyl violet from aqueous solution, J. Anal. Appl. Pyrolysis, 92 (2011) 258–266.
  19. J.M.V. Nabais, C. Laginhas, P.J.M. Carrott, M.M.L.R. Carrott, Thermal conversion of a novel biomass agricultural residue (vine shoots) into activated carbon using activation with CO2, J. Anal. Appl. Pyrolysis, 87 (2010) 8–13.
  20. B. Corcho-Corral, M. Olivares-Marín, C. Fernández-González, V. Gómez-Serrano, A. Macías-García, Preparation and textural characterisation of activated carbon from vine shoots (Vitis vinifera) by H3PO4 – chemical activation, Appl. Surf. Sci., 252 (2006) 5961–5966.
  21. B. Corcho-Corral, M. Olivares-Marín, E. Valdes-Sánchez, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Development of activated carbon using vine shoots (Vitis vinifera) and its use for wine treatment, J. Agric. Food Chem., 53 (2005) 644–650.
  22. D. Özçïmen, A. Ersoymerïçboyu, Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons, J. Hazard. Mater., 168 (2009) 1118–1125.
  23. N. Baylan, A.E. Meriçboyu, Adsorption of lead and copper on bentonite and grapeseed activated carbon in single- and binaryion systems, Sep. Sci. Technol., 51 (2016) 2360–2368.
  24. X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125 (2015) 70–85.
  25. X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M.B. McBride, A.G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102 (2011) 8877–8884.
  26. Y. Chun, G. Sheng, C.T. Chiou, B. Xing, Compositions and sorptive properties of crop residue-derived chars, Environ. Sci. Technol., 38 (2004) 4649–4655.
  27. M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.-K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol., 118 (2012) 536–544.
  28. X. Li, Q. Shen, D. Zhang, X. Mei, W. Ran, Y. Xu, G. Yu, Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy, PLoS One, 8 (2013) e65949.
  29. D. Kołodyńska, R. Wnętrzak, J.J. Leahy, M.H.B. Hayes, W. Kwapiński, Z. Hubicki, Kinetic and adsorptive characterization of biochar in metal ions removal, Chem. Eng. J., 197 (2012) 295–305.
  30. H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar, Water Res., 46 (2012) 854–862.
  31. K.H. Kim, J.-Y. Kim, T.-S. Cho, J.W. Choi, Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida), Bioresour. Technol., 118 (2012) 158–162.
  32. M. Gorgievski, D. Božić, V. Stanković, N. Štrbac, S. Šerbula, Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw, Ecol. Eng., 58 (2013) 113–122.
  33. L.M. Peruchi, A.H. Fostier, S. Rath, Sorption of norfloxacin in soils: analytical method, kinetics and Freundlich isotherms, Chemosphere, 119 (2015) 310–317.
  34. P. Nautiyal, K.A. Subramanian, M.G. Dastidar, Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternate use of waste of biodiesel industry, J. Environ. Manage., 182 (2016) 187–197.