References

  1. D.L. Jones, K.L. Williamson, A.G. Owen, Phytoremediation of landfill leachate, Waste Manage., 26 (2006) 825–837.
  2. M.J. Tedesco, P.A. Selbach, C. Gianello, F.D.O. Camargo, Resíduos orgânicos no solo e os impactos no ambiente, Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais, 2 (1999) 113–136.
  3. Agronômicas, Informações, C. Bayer, J. Mielniczuk, Dinâmica e função da matéria orgânica, Culturas de cobertura isoladas e/ou consorciadas na produção de massa seca, produtividade de milho e soja, atributos químicos e matéria orgânica do solo, 34.6 (2015) 16.
  4. C.A. Santos, L.C. Panchoni, D. Bini, B.H. Kuwano, K.B. Carmo, S.M.C.P. Silva, A.M. Martines, G. Andrade, D.S. Andrade, E.J.B.N. Cardoso, W. Zangaro, M.A. Nogueira. Land application of municipal landfill leachate: fate of ions and ammonia volatilization, J. Environ. Qual., 42 (2013) 523–531.
  5. T. Delazare, L.P. Ferreira, N.F. Ribeiro, M.M. Souza, J.C. Campos, L. Yokoyama, Removal of boron from oilfield wastewater via adsorption with synthetic layered double hydroxides, J. Environ. Sci. Health, Part A, 49 (2014) 923–932.
  6. N.C. Almeida, V.J.A. Oliveira, D.F. Angelis, Comparison of the adsorptive action of hydrotalcite, Moringa oleifera and activated carbon in the treatment of landfill leachate, Desal. Wat. Treat., 90 (2017) 220–230.
  7. A. Béres, I. Pálinkó, I. Kiricsi, J.B. Nagy, Y. Kiyozumi, F. Mizukami, Layered double hydroxides and their pillared derivatives – materials for solid base catalysis; synthesis and characterization, Appl. Catal., A, 182 (1999) 237–247.
  8. N.K. Lazaridis, D.D. Asouhidou, Kinetics of sorptive removal of chromium (VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite, Water Res., 37 (2003) 2875–2882.
  9. Y. Seida, Y. Nakano, Removal of phosphate by layered double hydroxides containing iron, Water Res., 36 (2002) 1306–1312.
  10. L.D. Conceição, S.B. Pergher, C.C. Moro, L.C. Oliveira, Magnetic composites based on hydrotalcites for removal of anionic contaminants in water, Quim. Nova, 30 (2007) 1077–1081.
  11. L. Costa, C. Ladeira, A. Colli Badino, Overproduction of clavulanic acid by extractive fermentation, Electron. J. Biotechnol., 18 (2015) 154–160.
  12. T. Wajima, Removal of boron from geothermal water using hydrotalcite, Toxicol. Environ. Chem., 92 (2010) 879–884.
  13. X.Z. Li, Q.L. Zhao, Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer, Ecol. Eng., 20 (2003) 171–181.
  14. G.P. Gillman, Charged clays: an environmental solution, Appl. Clay Sci., 53 (2011) 361–365.
  15. P. Ghosh, I.S. Thakur, A. Kaushik, Bioassays for toxicological risk assessment of landfill leachate: a review, Ecotoxicol. Environ. Saf., 141 (2017) 259–270.
  16. A. Ronco, M.C.D. Baez, Y.P. Granados, Conceptos Generales, G.C. Morales, Ed., EnsayosToxicológicos y Métodos de Evaluación de Calidad de Agua: estandarización, intercalibración, resultados y aplicaciones, IMTA, Mexico, 2004, 142 pages.
  17. B.M. Wilke, F. Riepert, C. Koch, T. Kühne, Ecotoxicological characterization of hazardous wastes, Ecotoxicol. Environ. Saf., 70 (2008) 283–293.
  18. Estado de São Paulo, Decreto Estadual nº 8468, de 8 de setembro de 1976: aprova o regulamento da lei nº 997, de 31 de maio de 1976, que dispõe sobre a prevenção e controle da poluição do meio ambiente, Diário Oficial do Estado de São Paulo, São Paulo (SP).
  19. CETESB, Companhia Ambiental de São Paulo, Norma técnica L. 5.201 – Bactérias Heterotróficas – Contagem em placas: método de ensaio, São Paulo, 1986, p. 26.
  20. Titrations. info., Mohr Method, Available at: http://www.titrations.info/precipitation-titration-argentometry-chlorides-Mohr, Accessed November 2016.
  21. USEPA, Method 7062: Antimony and Arsenic (Atomic Absorption, Borohydride Reduction), Part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Revision 00, 1994, Available at: https://www.epa.gov/sites/production/files/2015-12/documents/7062.pdf.
  22. USEPA, Method 6010C (SW-846): Inductively Coupled Plasma- Atomic Emission Spectrometry, Revision 3, 2007, Available at: https://www.epa.gov/homeland-security-research/epa-method-6010c-sw-846-inductively-coupled-plasma-atomic-emission.
  23. APHA SMEWW, American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 22nd revised ed., 2012.
  24. USEPA, Method 7470A (SW-846): Mercury in Liquid Waste (Manual Cold-Vapor Technique), Revision 1, 1994, Available at: https://www.epa.gov/homeland-security-research/epa-method-7470a-sw-846-mercury-liquid-wastes-manual-cold-vaportechnique.
  25. USEPA, Method 300.1: Determination of Inorganic Anions in Drinking Water by Ion Chromatography, Revision 1.0, 1997, Available at: https://www.epa.gov/homeland-securityresearch/epa-method-3001-revision-10-determinationinorganic-anions-drinking-water.
  26. M.A. Hamilton, R.C. Russo, R.V. Thurston, Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays, Environ. Sci. Technol., 11 (1977) 714–719.
  27. ABNT, Associação Brasileira de Normas Técnicas, NBR 12713:2016 Ecotoxicologia Aquática – Toxicidade aguda – Método de ensaio com Daphnia spp. (Crustacea, Cladocera), Rio de Janeiro, 2016, p. 21.
  28. CETESB, Companhia Ambiental de São Paulo, Norma técnica L. 05.021 – Água do Mar – Teste de toxicidade aguda com Artemia, São Paulo, 1987, p. 15.
  29. CETESB, Companhia Ambiental Do Estado De São Paulo, Norma técnica L. 6.245 – Coleta e preparação de amostras, Procedimentos, São Paulo, 1984, p. 25.
  30. J.H. Zar, Biostatistical Analysis, 5th ed., Pearson Prentice Hall, USA, 2010, 994 pages.
  31. R. Bartha, D. Pramer, Features of a flask and method for measuring the persistence and biological effects of pesticides in soil, Soil Sci., 100 (1965) 68–70.
  32. A.P. Mariano, S.H.R. Crivelaro, D.F. Angelis, D.M. Bonotto, The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil, Braz. Arch. Biol. Technol, 52 (2009) 1043–1055.
  33. OECD, Guideline for the Testing of Chemicals, Test No. 307: Aerobic and Anaerobic Transformation in Soil, OECD Publishing, Paris, 2002.
  34. AGSOLVE, Como e porque medir a Condutividade Elétrica com sondas muiltiparâmetros, Available at: https://www.agsolve.com.br/noticias/como-e-porque-medir-a-condutividadeeletrica-ce-com-sondas-muiltiparametros, Accessed November 2016.
  35. SABESP, Companhia de saneamento básico de São Paulo, Qualidade de água, Available at: http://site.sabesp.com.br/site/interna/Default.aspx?secaoId=40, Accessed November 2016.
  36. C.N. Oliveira, V.P. Campos, Y.D. Pinto Medeiros, Avaliação e identificação de parâmetros importantes para a qualidade de corpos d’água no semiárido baiano. Estudo de caso: bacia hidrográfica do rio Salitre, Quím. Nova, 33 (2010) 1059–1066.
  37. C. Amor, E. De Torres-Socías, J.A. Peres, M.I. Maldonado, I. Oller, S. Malato, M.S. Lucas, Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes, J. Hazard. Mater., 286 (2015) 261–268.
  38. H. Hashemi, Y. Hajizadeh, M.M. Amin, B. Bina, A. Ebrahimi, A. Khodabakhshi, A. Ebrahimi, H.R. Pourzamani, Macropollutants removal from compost leachate using membrane separation process, Desal. Wat. Treat., 57 (2016) 7149–7154.
  39. R. Chemlal, N. Abdi, N. Drouiche, H. Lounici, A. Pauss, N. Mameri. Rehabilitation of Oued Smar landfill into a recreation park: treatment of the contaminated waters, Ecol. Eng., 51 (2013) 244–248.
  40. R. Chemlal, L. Azzouz, R. Kernani, N. Abdi, H. Lounici, H. Grib, N. Mameri, N. Drouiche, Combination of advanced oxidation and biological processes for the landfill leachate treatment, Ecol. Eng., 73 (2014) 281–289.
  41. WHO – World Health Organization, Guidelines for Drinking- Water Quality: Recommendations, World Health Organization, 2004.
  42. L.G. Souza, Estudo da remoção de ânions de soluções aquosas por meio de sorção em hidróxidos duplos lamelares, Dissertação de mestrado, Universidade Federal do Rio de Janeiro, Escola de Química, 2008, 132 pages.
  43. J. Das, B.S. Patra, N. Baliarsingh, K.M. Parida, Adsorption of phosphate by layered double hydroxides in aqueous solutions, Appl. Clay Sci., 32 (2006) 252–260.
  44. X. Tong, Z. Yang, P. Xu, Y. Li, X. Niu, Nitrate adsorption from aqueous solutions by calcined ternary Mg-Al-Fe hydrotalcite, Water Sci. Technol., 75 (2017) 2194–2203.
  45. B.M. Svensson, L. Mathiasson, L. Mårtensson, S. Bergström, Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills, Environ. Monit. Assess., 102 (2005) 309–321.
  46. R.F.H. Giehl, N.V. Wirén, Root nutrient foraging, Plant Physiol., 166 (2014) 509–517.
  47. M.S. Bowman, T.S. Clune, B.G. Sutton, Sustainable management of landfill leachate by irrigation, Water, Air, Soil Pollut., 134 (2002) 81–96.
  48. K. Williamson, Soil-Vegetation Based Remediation Studies of Landfill Leachate, Diss. University of Wales, Bangor, 2001.
  49. A.S. Nakatani, A.M. Martines, M.A. Nogueira, D.S. Fagotti, A.G. Oliveira, D. Bini, J.P. Sousa, E.J.B.N. Cardoso, Changes in the genetic structure of bactéria and microbial activity in an agricultural soil amended with tannery sludge, Soil Biol. Biochem., 43 (2011) 106–114.
  50. G.S.B.G. Pattinson, B.G. Sutton, P.A. McGee, Leachate from a Waste Disposal Centre reduces the initiation of arbuscular mycorrhiza, and spread of hyphae in soil, Plant Soil, 227 (2000) 35–45.
  51. H. Chen, N.V. Mothapo, W. Shi, Soil moisture and pH control relative contributions of fungi and bacteria to N2O production, Microb. Ecol., 69 (2015) 180–191.
  52. A. Campos, J.C. Marconato, S.M. Martins-Franchetti, The influence of soil and landfill leachate microorganisms in the degradation of PVC/PCL films cast from DMF. Polímeros, 22 (2012) 220–227.
  53. H.T.J. Reijers, S.E. Valster-Schiermeier, P.D. Cobden, R.W. van den Brink, Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane, Ind. Eng. Chem. Res., 45 (2006) 2522–2530.