References
- D.L. Jones, K.L. Williamson, A.G. Owen, Phytoremediation of
landfill leachate, Waste Manage., 26 (2006) 825–837.
- M.J. Tedesco, P.A. Selbach, C. Gianello, F.D.O. Camargo,
Resíduos orgânicos no solo e os impactos no ambiente,
Fundamentos da matéria orgânica do solo: ecossistemas
tropicais e subtropicais, 2 (1999) 113–136.
- Agronômicas, Informações, C. Bayer, J. Mielniczuk, Dinâmica
e função da matéria orgânica, Culturas de cobertura isoladas
e/ou consorciadas na produção de massa seca, produtividade
de milho e soja, atributos químicos e matéria orgânica do solo,
34.6 (2015) 16.
- C.A. Santos, L.C. Panchoni, D. Bini, B.H. Kuwano, K.B. Carmo,
S.M.C.P. Silva, A.M. Martines, G. Andrade, D.S. Andrade,
E.J.B.N. Cardoso, W. Zangaro, M.A. Nogueira. Land application
of municipal landfill leachate: fate of ions and ammonia
volatilization, J. Environ. Qual., 42 (2013) 523–531.
- T. Delazare, L.P. Ferreira, N.F. Ribeiro, M.M. Souza, J.C. Campos,
L. Yokoyama, Removal of boron from oilfield wastewater
via adsorption with synthetic layered double hydroxides,
J. Environ. Sci. Health, Part A, 49 (2014) 923–932.
- N.C. Almeida, V.J.A. Oliveira, D.F. Angelis, Comparison of the
adsorptive action of hydrotalcite, Moringa oleifera and activated
carbon in the treatment of landfill leachate, Desal. Wat. Treat.,
90 (2017) 220–230.
- A. Béres, I. Pálinkó, I. Kiricsi, J.B. Nagy, Y. Kiyozumi,
F. Mizukami, Layered double hydroxides and their pillared
derivatives – materials for solid base catalysis; synthesis and
characterization, Appl. Catal., A, 182 (1999) 237–247.
- N.K. Lazaridis, D.D. Asouhidou, Kinetics of sorptive removal of
chromium (VI) from aqueous solutions by calcined Mg–Al–CO3
hydrotalcite, Water Res., 37 (2003) 2875–2882.
- Y. Seida, Y. Nakano, Removal of phosphate by layered
double hydroxides containing iron, Water Res., 36 (2002)
1306–1312.
- L.D. Conceição, S.B. Pergher, C.C. Moro, L.C. Oliveira, Magnetic
composites based on hydrotalcites for removal of anionic
contaminants in water, Quim. Nova, 30 (2007) 1077–1081.
- L. Costa, C. Ladeira, A. Colli Badino, Overproduction of
clavulanic acid by extractive fermentation, Electron. J. Biotechnol.,
18 (2015) 154–160.
- T. Wajima, Removal of boron from geothermal water using
hydrotalcite, Toxicol. Environ. Chem., 92 (2010) 879–884.
- X.Z. Li, Q.L. Zhao, Recovery of ammonium-nitrogen from
landfill leachate as a multi-nutrient fertilizer, Ecol. Eng., 20
(2003) 171–181.
- G.P. Gillman, Charged clays: an environmental solution, Appl.
Clay Sci., 53 (2011) 361–365.
- P. Ghosh, I.S. Thakur, A. Kaushik, Bioassays for toxicological
risk assessment of landfill leachate: a review, Ecotoxicol.
Environ. Saf., 141 (2017) 259–270.
- A. Ronco, M.C.D. Baez, Y.P. Granados, Conceptos Generales,
G.C. Morales, Ed., EnsayosToxicológicos y Métodos de
Evaluación de Calidad de Agua: estandarización, intercalibración,
resultados y aplicaciones, IMTA, Mexico, 2004, 142 pages.
- B.M. Wilke, F. Riepert, C. Koch, T. Kühne, Ecotoxicological
characterization of hazardous wastes, Ecotoxicol. Environ. Saf.,
70 (2008) 283–293.
- Estado de São Paulo, Decreto Estadual nº 8468, de 8 de setembro
de 1976: aprova o regulamento da lei nº 997, de 31 de maio de
1976, que dispõe sobre a prevenção e controle da poluição do
meio ambiente, Diário Oficial do Estado de São Paulo, São
Paulo (SP).
- CETESB, Companhia Ambiental de São Paulo, Norma técnica L.
5.201 – Bactérias Heterotróficas – Contagem em placas: método
de ensaio, São Paulo, 1986, p. 26.
- Titrations. info., Mohr Method, Available at: http://www.titrations.info/precipitation-titration-argentometry-chlorides-Mohr, Accessed November 2016.
- USEPA, Method 7062: Antimony and Arsenic (Atomic
Absorption, Borohydride Reduction), Part of Test Methods for
Evaluating Solid Waste, Physical/Chemical Methods, Revision
00, 1994, Available at: https://www.epa.gov/sites/production/files/2015-12/documents/7062.pdf.
- USEPA, Method 6010C (SW-846): Inductively Coupled Plasma-
Atomic Emission Spectrometry, Revision 3, 2007, Available at:
https://www.epa.gov/homeland-security-research/epa-method-6010c-sw-846-inductively-coupled-plasma-atomic-emission.
- APHA SMEWW, American Public Health Association,
American Water Works Association, Water Environment
Federation, Standard Methods for the Examination of Water
and Wastewater, 22nd revised ed., 2012.
- USEPA, Method 7470A (SW-846): Mercury in Liquid Waste
(Manual Cold-Vapor Technique), Revision 1, 1994, Available at:
https://www.epa.gov/homeland-security-research/epa-method-7470a-sw-846-mercury-liquid-wastes-manual-cold-vaportechnique.
- USEPA, Method 300.1: Determination of Inorganic Anions
in Drinking Water by Ion Chromatography, Revision 1.0,
1997, Available at: https://www.epa.gov/homeland-securityresearch/epa-method-3001-revision-10-determinationinorganic-anions-drinking-water.
- M.A. Hamilton, R.C. Russo, R.V. Thurston, Trimmed Spearman-Karber method for estimating median lethal concentrations in
toxicity bioassays, Environ. Sci. Technol., 11 (1977) 714–719.
- ABNT, Associação Brasileira de Normas Técnicas, NBR
12713:2016 Ecotoxicologia Aquática – Toxicidade aguda –
Método de ensaio com Daphnia spp. (Crustacea, Cladocera), Rio
de Janeiro, 2016, p. 21.
- CETESB, Companhia Ambiental de São Paulo, Norma técnica L.
05.021 – Água do Mar – Teste de toxicidade aguda com Artemia,
São Paulo, 1987, p. 15.
- CETESB, Companhia Ambiental Do Estado De São Paulo,
Norma técnica L. 6.245 – Coleta e preparação de amostras,
Procedimentos, São Paulo, 1984, p. 25.
- J.H. Zar, Biostatistical Analysis, 5th ed., Pearson Prentice Hall,
USA, 2010, 994 pages.
- R. Bartha, D. Pramer, Features of a flask and method for
measuring the persistence and biological effects of pesticides in
soil, Soil Sci., 100 (1965) 68–70.
- A.P. Mariano, S.H.R. Crivelaro, D.F. Angelis, D.M. Bonotto, The
use of vinasse as an amendment to ex-situ bioremediation of
soil and groundwater contaminated with diesel oil, Braz. Arch.
Biol. Technol, 52 (2009) 1043–1055.
- OECD, Guideline for the Testing of Chemicals, Test No. 307:
Aerobic and Anaerobic Transformation in Soil, OECD Publishing,
Paris, 2002.
- AGSOLVE, Como e porque medir a Condutividade Elétrica com
sondas muiltiparâmetros, Available at: https://www.agsolve.com.br/noticias/como-e-porque-medir-a-condutividadeeletrica-ce-com-sondas-muiltiparametros, Accessed November
2016.
- SABESP, Companhia de saneamento básico de São Paulo,
Qualidade de água, Available at: http://site.sabesp.com.br/site/interna/Default.aspx?secaoId=40, Accessed November 2016.
- C.N. Oliveira, V.P. Campos, Y.D. Pinto Medeiros, Avaliação
e identificação de parâmetros importantes para a qualidade
de corpos d’água no semiárido baiano. Estudo de caso: bacia
hidrográfica do rio Salitre, Quím. Nova, 33 (2010) 1059–1066.
- C. Amor, E. De Torres-Socías, J.A. Peres, M.I. Maldonado,
I. Oller, S. Malato, M.S. Lucas, Mature landfill leachate
treatment by coagulation/flocculation combined with Fenton
and solar photo-Fenton processes, J. Hazard. Mater., 286 (2015)
261–268.
- H. Hashemi, Y. Hajizadeh, M.M. Amin, B. Bina, A.
Ebrahimi, A. Khodabakhshi, A. Ebrahimi, H.R. Pourzamani,
Macropollutants removal from compost leachate using
membrane separation process, Desal. Wat. Treat., 57 (2016)
7149–7154.
- R. Chemlal, N. Abdi, N. Drouiche, H. Lounici, A. Pauss,
N. Mameri. Rehabilitation of Oued Smar landfill into a
recreation park: treatment of the contaminated waters, Ecol.
Eng., 51 (2013) 244–248.
- R. Chemlal, L. Azzouz, R. Kernani, N. Abdi, H. Lounici, H. Grib,
N. Mameri, N. Drouiche, Combination of advanced oxidation
and biological processes for the landfill leachate treatment,
Ecol. Eng., 73 (2014) 281–289.
- WHO – World Health Organization, Guidelines for Drinking-
Water Quality: Recommendations, World Health Organization,
2004.
- L.G. Souza, Estudo da remoção de ânions de soluções aquosas
por meio de sorção em hidróxidos duplos lamelares, Dissertação
de mestrado, Universidade Federal do Rio de Janeiro, Escola de
Química, 2008, 132 pages.
- J. Das, B.S. Patra, N. Baliarsingh, K.M. Parida, Adsorption of
phosphate by layered double hydroxides in aqueous solutions,
Appl. Clay Sci., 32 (2006) 252–260.
- X. Tong, Z. Yang, P. Xu, Y. Li, X. Niu, Nitrate adsorption from
aqueous solutions by calcined ternary Mg-Al-Fe hydrotalcite,
Water Sci. Technol., 75 (2017) 2194–2203.
- B.M. Svensson, L. Mathiasson, L. Mårtensson, S. Bergström,
Artemia salina as test organism for assessment of acute toxicity
of leachate water from landfills, Environ. Monit. Assess., 102
(2005) 309–321.
- R.F.H. Giehl, N.V. Wirén, Root nutrient foraging, Plant Physiol.,
166 (2014) 509–517.
- M.S. Bowman, T.S. Clune, B.G. Sutton, Sustainable management
of landfill leachate by irrigation, Water, Air, Soil Pollut., 134
(2002) 81–96.
- K. Williamson, Soil-Vegetation Based Remediation Studies of
Landfill Leachate, Diss. University of Wales, Bangor, 2001.
- A.S. Nakatani, A.M. Martines, M.A. Nogueira, D.S. Fagotti,
A.G. Oliveira, D. Bini, J.P. Sousa, E.J.B.N. Cardoso, Changes
in the genetic structure of bactéria and microbial activity in
an agricultural soil amended with tannery sludge, Soil Biol.
Biochem., 43 (2011) 106–114.
- G.S.B.G. Pattinson, B.G. Sutton, P.A. McGee, Leachate from
a Waste Disposal Centre reduces the initiation of arbuscular
mycorrhiza, and spread of hyphae in soil, Plant Soil, 227 (2000)
35–45.
- H. Chen, N.V. Mothapo, W. Shi, Soil moisture and pH control
relative contributions of fungi and bacteria to N2O production,
Microb. Ecol., 69 (2015) 180–191.
- A. Campos, J.C. Marconato, S.M. Martins-Franchetti, The
influence of soil and landfill leachate microorganisms in the
degradation of PVC/PCL films cast from DMF. Polímeros, 22
(2012) 220–227.
- H.T.J. Reijers, S.E. Valster-Schiermeier, P.D. Cobden, R.W. van
den Brink, Hydrotalcite as CO2 sorbent for sorption-enhanced
steam reforming of methane, Ind. Eng. Chem. Res., 45 (2006)
2522–2530.