References

  1. Association, I.D., Desalination by the Numbers | IDA, Available at: http://idadesal.org/desalination-101/desalinationby-the-numbers/ (accessed on Jan 1, 2017).
  2. U. Yermiyahu, A. Tal, A. Ben-Gal, A. Bar-Tal, J. Tarchitzky, O. Lahav, Rethinking desalinated water quality and agriculture, Science, 318 (2007) 920–921.
  3. F. Rahman, Calcium sulfate precipitation studies with scale inhibitors for reverse osmosis desalination, Desalination, 319 (2013) 79–84.
  4. A. Pérez-González, R. Ibáñez, P. Gómez, A.M. Urtiaga, I. Ortiz, J.A. Irabien, Recovery of desalination brines: separation of calcium, magnesium and sulfate as a pre-treatment step, Desal. Wat. Treat., 56 (2015) 3617–3625.
  5. S.T. Mitrouli, M. Kostoglou, A.J. Karabelas, A. Karanasiou, Incipient crystallization of calcium carbonate on desalination membranes: dead-end filtration with agitation, Desal. Wat. Treat., 57 (2016) 2855–2869.
  6. M. Khayet, Fouling and scaling in desalination, Desalination, 393 (2016) 1.
  7. D.M. Warsinger, J. Swaminathan, E. Guillen-Burrieza, H.A. Arafat, V.J. Lienhard, Scaling and fouling in membrane distillation for desalination applications: a review, Desalination, 356 (2015) 294–313.
  8. S.J. Pugh, G.F. Hewitt, H. Müller-Steinhagen, Fouling during the use of seawater as coolant – the development of a user guide, Heat Transfer Eng., 26 (2005) 35–43.
  9. M.S.H. Bader, Sulfate removal technologies for oil fields seawater injection operations, J. Pet. Sci. Eng., 55 (2007) 93–110.
  10. L.A. Cisternas, E.D. Gálvez, The use of seawater in mining, Miner. Process. Extr. Metall. Rev., 39 (2017) 18–33.
  11. R.I. Jeldres, L. Forbes, L.A. Cisternas, Effect of seawater on sulfide ore flotation: a review, Miner. Process. Extr. Metall. Rev., 37 (2016) 369–384.
  12. S. Castro, A. Lopez-Valdivieso, J.S. Laskowski, Review of the flotation of molybdenite. Part I: Surface properties and floatability, Int. J. Miner. Process., 148 (2016) 48–58.
  13. S. Castro, P. Rioseco, J.S. Laskowski, Depression of Molybdenite in Sea Water, XXVI Int. Miner. Process. Congr., 2012, pp. 737–752.
  14. R.I. Jeldres, M.P. Arancibia-Bravo, A. Reyes, C.E. Aguirre, L. Cortes, L.A. Cisternas, The impact of seawater with calcium and magnesium removal for the flotation of coppermolybdenum sulphide ores, Miner. Eng., 109 (2017) 10–13.
  15. J. Dick, W. De Windt, B. De Graef, H. Saveyn, P. Van Der Meeren, N. De Belie, W. Verstraete, Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species, Biodegradation, 17 (2006) 357–367.
  16. A.J. Phillips, R. Gerlach, E. Lauchnor, A.C. Mitchell, A.B. Cunningham, L. Spangler, Engineered applications of ureolytic biomineralization: a review, Biofouling, 29 (2013) 715–733.
  17. G.A. Silva-Castro, I. Uad, A. Rivadeneyra, J.I. Vilchez, D. Martin-Ramos, J. González-López, M.A. Rivadeneyra, Carbonate precipitation of bacterial strains isolated from sediments and seawater: formation mechanisms, Geomicrobiol. J., 30 (2013) 840–850.
  18. S.M. Al-Thawadi, Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand, J. Adv. Sci. Eng. Res., 1 (2011) 98–114.
  19. S.M. Al-Thawadi, Consolidation of sand particles by aggregates of calcite nanoparticles synthesized by ureolytic bacteria under non-sterile conditions, J. Chem. Sci. Technol., 2 (2013) 141–146.
  20. F. Hammes, K. Van Hege, T. Van De Wiele, J. Vanderdeelen, S.D. Siciliano, W. Verstraete, Calcium removal from industrial wastewater by bio-catalytic CaCO3 precipitation, J. Chem. Technol. Biotechnol., 78 (2003) 670–677.
  21. M. Carballa, W. Moerman, W. De Windt, H. Grootaerd, W. Verstraete, Strategies to optimize phosphate removal from industrial anaerobic effluents by magnesium ammonium phosphate (MAP) production, J. Chem. Technol. Biotechnol., 84 (2006) 63–68.
  22. L. Altaş, A. Kiliç, H. Koçyiğit, M. Işik, Adsorption of Cr(VI) on ureolytic mixed culture from biocatalytic calcification reactor, Colloids Surf., B, 86 (2011) 404–408.
  23. E. Desmidt, K. Ghyselbrecht, A. Monballiu, W. Verstraete, B.D. Meesschaert, Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale, Water Sci. Technol., 65 (2012) 1954–1962.
  24. M. Işık, L. Altaş, S. Özcan, İ. Şimşek, O.N. Ağdağ, A. Alaş, Effect of urea concentration on microbial Ca precipitation, J. Ind. Eng. Chem., 18 (2012) 1908–1911.
  25. D. Arias, D.L.A. Cisternas, M. Rivas, Biomineralization of calcium and magnesium crystals from seawater by halotolerant bacteria isolated from Atacama Salar (Chile), Desalination, 405 (2017) 1–9.
  26. G.D.O. Okwadha, J. Li, Optimum conditions for microbial carbonate precipitation, Chemosphere, 81 (2010) 1143–1148.
  27. L.S. Wong, Microbial cementation of ureolytic bacteria from the genus Bacillus: a review of the bacterial application on cementbased materials for cleaner production, J. Cleaner Prod., 93 (2015) 5–17.
  28. G.I. Danmaliki, T.A. Saleh, A.A. Shamsuddeen, Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon, Chem. Eng. J., 313 (2017) 993–1003.
  29. K.N. Kontogiannopoulos, S.I. Patsios, A.J. Karabelas, Tartaric acid recovery from winery lees using cation exchange resin: optimization by response surface methodology, Sep. Purif. Technol., 165 (2016) 32–41.
  30. A. Zuorro, Optimization of polyphenol recovery from espresso coffee residues using factorial design and response surface methodology, Sep. Purif. Technol., 152 (2015) 64–69.
  31. F. Charte, I. Romero, M.D. Pérez-Godoy, A.J. Rivera, E. Castro, Comparative analysis of data mining and response surface methodology predictive models for enzymatic hydrolysis of pretreated olive tree biomass, Comput. Chem. Eng., 101 (20017) 23–30.
  32. V.M. Simić, K.M. Rajković, S.S. Stojičević, D.T. Veličković, N.Č. Nikolić, M.L. Lazić, I.T. Karabegović, Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network, Sep. Purif. Technol., 160 (2016) 89–97.
  33. D.A.D. Genuino, B.G. Bataller, S.C. Capareda, M.D.G. de Luna, Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar, J. Environ. Chem. Eng., 5 (2017) 4101–4107.
  34. A. Aminian, Prediction of temperature elevation for seawater in multi-stage flash desalination plants using radial basis function neural network, Chem. Eng. J., 162 (2010) 552–556.
  35. S. Uchimurai, Y. Hamamotoj, S. Tomitat, Effects of the Sample Size in Artificial Neural Network Classifier Design, Proc. ICNN’95 - International Conference on Neural Networks, IEEE, vol. 4, 1995, pp. 2126–2129.
  36. A. Idri, A. Zakrani, A. Zahi, Design of radial basis function neural networks for software effort estimation, Int. J. Comput. Sci., 7 (2010) 11–17.
  37. G. Delgado, R. Delgado, J. Párraga, M.A. Rivadeneyra, V. Aranda, Precipitation of carbonates and phosphates by bacteria in extract solutions from a semi-arid saline soil. Influence of Ca2+ and Mg2+ concentrations and Mg2+/Ca2+ molar ratio in biomineralization, Geomicrobiol. J., 25 (2008) 1–13.
  38. K.S. Le Corre, E. Valsami-Jones, P. Hobbs, S.A. Parsons, Impact of calcium on struvite crystal size, shape and purity, J. Cryst. Growth, 283 (2005) 514–522.