References

  1. M. Lucas, P.J. Martínez, A. Viedma, Experimental study on the thermal performance of a mechanical cooling tower with different drift eliminators, Energy Convers. Manage., 50 (2009) 490–497.
  2. G.W. Israe, T.J. Overcam, W.J. Prlngl, A method to measure drift deposition from saline natural draft cooling towers, Atmos. Environ., 12 (1977) 125–130.
  3. N.R. Meroney, CFD prediction of cooling tower drift, J. Wind Eng. Ind. Aerodyn., 94 (2006) 463–490.
  4. B. Zamora, A.S. Kaiser, Comparative efficiency evaluations of four types of cooling tower drift eliminator by numerical investigation, Chem. Eng. Sci., 66 (2011) 1232–1245.
  5. M. Lucas, P.J. Martínez, A. Viedma, Comparative experimental drift study between a dry and adiabatic fluid cooler and a cooling tower, Int. J. Refrig., 31 (2008) 1169–1175.
  6. M. Lucas, P.J. Martínez, A. Viedma, Experimental determination of drift loss from a cooling tower with different drift eliminators using the chemical balance method, Int. J. Refrig., 35 (2012) 1779–1788.
  7. M. Lemouari, M. Boumaza, Experimental investigation of the performance characteristics of a counterflow wet cooling tower, Int. J. Thermal Sci., 49 (2010) 2049–2056.
  8. M. Lucas, J. Ruiz, P.J. Martínez, Experimental study on the performance of a mechanical cooling tower fitted with different types of water distribution systems and drift eliminators, Appl. Thermal Eng., 50 (2013) 282–292.
  9. J. Grau-Bové, M. Strlič, L. Mazzei, Applicability of a drift-flux model of aerosol deposition in a test tunnel and an indoor heritage environment, Build. Environ., 106 (2016) 78–90.
  10. X.X. Li, H. Gurgenci, Z. Guan, Y. Sun, Experimental study of cold inflow effect on a small natural draft dry cooling tower, Appl. Thermal Eng., 128 (2018) 762–771.
  11. Y. Guo, F. Wang, M. Jia, S. Zhang, Parallel hybrid model for mechanical draft counter flow wet-cooling tower, Appl. Thermal Eng., 125 (2017) 1379–1388.
  12. A.M. Lavasani, Z.N. Baboli, M. Zamanizadeh, Experimental study on the thermal performance of mechanical cooling tower with rotational splash type packing, Energy Convers. Manage., 87 (2014) 530–538.
  13. P.M. Foster, M.I. Williams, R.J. Winter, Droplet behavior and collection by counter flow cooling tower eliminators, Atmos. Environ., 8 (1974) 349–360.
  14. B.R. Gardner, H.J. Lowe, The research and development background to the environmental problems natural draught cooling towers, Atmos. Environ., 8 (1974) 313–320.
  15. J. Chan, M.W. Golay, Comparative performance evaluation of current design evaporative cooling tower drift eliminators, Atmos. Environ., 11 (1977) 775–781.
  16. S.V. Bedekar, P. Nithiarasu, K.N. Seetharamu, Experimental investigation of the performance of a counter-flow, packed-bed mechanical cooling tower, Energy, 23 (1998) 943–947.
  17. H.R. Goshayshi, J.F. Missenden, The investigation of cooling tower packing in various arrangements, Appl. Thermal Eng., 20 (2000) 69–80.
  18. P. Naphon, Study on the heat transfer characteristics of an evaporative cooling tower, Int. Commun. Heat Mass Transfer, 32 (2005) 1066–1074.
  19. A. Schwarzenegger, Performance, Cost, and Environmental Effects of Saltwater Cooling Towers, California Energy Commission, Sacramento, 2010.
  20. M. Rahmati, S.R. Alavi, M.R. Tavakoli, Experimental investigation on performance enhancement of forced draft wet cooling towers with special emphasis on the role of stage numbers, Energy Convers. Manage., 126 (2016) 971–981.
  21. S.R. Alavi, M. Rahmati, Experimental investigation on thermal performance of natural draft wet cooling towers employing an innovative wind-creator setup, Energy Convers. Manage., 122 (2016) 504–514.
  22. B.K. Naik, P. Muthukumar, A novel approach for performance assessment of mechanical draft wet, cooling towers, Appl. Thermal Eng., 121 (2017) 14–26.
  23. J. Ruiz, A.S. Kaiser, B. Zamora, C.G. Cutillas, M. Lucas, CFD analysis of drift eliminators using RANS and LES turbulent models, Appl. Thermal Eng., 105 (2016) 979–987.
  24. H. Ma, F. Si, X. Li, J. Wang, Effects of pressure loss coefficients of heat exchanger on thermal performance of the dry cooling tower, Energy Procedia, 136 (2017) 169–175.
  25. N. Blain, A. Belaud, M. Miolane, Development and validation of a CFD model for numerical simulation of a large natural draft wet cooling tower, Appl. Thermal Eng., 105 (2016) 953–960.
  26. A.J. Policastro, W.E. Dunn, A model for seasonal and annual cooling tower impacts, Atmos. Environ., 28 (1994) 379–395.
  27. G. Ritwick, K.R. Tapan, R. Ganguly, Cooling tower fog harvesting in power plants – a pilot study, Energy, 89 (2015) 1018–1028.
  28. R.A. Carhart, A.J. Policastro, A second-generation model for cooling tower plume rise and dispersion, Atmos. Environ., 8 (1991) 1559.
  29. USNRC, Standard Review Plants for Environment Reviews for Nuclear Power Plants, NUREG-1555, October 1999.
  30. S.K. Tyagi, A.K. Pandey, P.C. Pant, V.V. Tyagi, Formation, potential and abatement of plume from wet cooling towers, Renew. Sustain. Energy Rev., 16 (2012) 3409–3429.
  31. M. Lucasa, P.J. Martíneza, J. Ruiza, A.S. Kaiserb, A. Viedmab, On the influence of psychrometric ambient conditions on cooling tower drift deposition, Int. J. Heat Mass Transfer, 53 (2010) 594–604.
  32. A. Klimanek, M. Cedzich, R. Białecki, 3D CFD modeling of natural draft wet-cooling tower with flue gas injection, Appl. Thermal Eng., 91 (2015) 824–833.
  33. A. Chahine, P. Matharan, D. Wendum, L. Musson-Genon, R. Bresson, B. Carissimo, Modelling atmospheric effects on performance and plume dispersal from natural draft wet cooling towers, J. Wind Eng. Ind., 136 (2015) 151–164.
  34. N. Robert, Protocol for CFD prediction of cooling-tower drift in an urban environment, J. Wind Eng. Ind. Aerodyn., 96 (2008) 1789–1804.
  35. A.J. Consuegro, A.S. Kaiser, B. Zamora, F. Sánchez, M. Lucas, M. Hernández, Numerical modeling of the drift and deposition of droplets emitted by mechanical cooling towers on buildings and its experimental validation, Build. Environ., 78 (2014) 53–67.
  36. M. Deziani, K. Rahmani, S.J. Roudaki, M. Kordloo, Feasibility study for reduce water evaporative loss in a power plant cooling tower by using air to air heat exchanger with auxiliary fan, Desalination, 406 (2017) 119–124.
  37. Y. Zhao, F. Sun, G. Long, X. Huang, W. Huang, D. lyv, Comparative study on the cooling characteristics of high level water collecting natural draft wet cooling tower and the usual cooling tower, Energy Convers. Manage., 115 (2016) 150–164.
  38. J. Ruiz, C.G. Cutillas, A.S. Kaiser, M. Ballesta, B. Zamora, Experimental study of drift deposition from mechanical draft cooling towers in urban environments, Energy Build., 125 (2016) 181–195.
  39. DL/T1027-2006, Code for acceptance test specification of industrial cooling tower, China, 2006.
  40. GB/T 23248-2009, Code for design of seawater treatment for recirculating cooling seawater system, China, 2009.