References

  1. J. Shular, R. Barker, B. Nicholson, Locating and Estimating Air Emissions from Sources of Chromium. Supplement, Final report, Midwest Research Institute, Cary, NC, USA, 1989.
  2. M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, On Thermal Performance of Seawater Cooling Towers, J. Eng. Gas Turbines Power, 133 (2011) 649–659.
  3. M.E. Warner, M.R. Lefevre, Salt Water Natural-draft Cooling Tower Design Considerations, Proc. American Power Conference, USA, 1974, p. 36.
  4. Rittenhouse, Salt water cooling tower retrofit experience, Power Eng., 98 (1994) 26–29.
  5. H.U. Jin-Yi, C.Q. Lin, Q.H. Pei, Economic analysis of salt water cooling tower system, Energy Eng., 6 (2011) 64–68.
  6. A. Roffman, L.D.V. Vleck, The state-of-the-art of measuring and predicting cooling tower drift and its deposition, J. Air Waste Manage., 24 (1974) 855–859.
  7. A. Roffman, H. Roffman, Effects of salt water cooling tower drift on water bodies and soil, Water Air Soil Pollut., 2 (1973) 457–471.
  8. G.O. Schrecker, C.D. Henderson, Salt water condenser cooling: measurements of salt water drift from a mechanicaldraft wet cooling tower and spray modules, and operating experience with cooling tower materials, Proc. American Power Conference, USA, 1976, p. 38.
  9. G.O. Schrecker, R.O. Webb, D.A. Rutherford, Drift Data Acquired on Mechanical Salt Water Cooling Devices, Final Report, 1975.
  10. Roffman, Predictions of drift deposition from salt water cooling towers, Cooling Tower Institute Publications, Houston, 1973.
  11. M. Gao, N. Wang, Y. Shi, Experimental Research on Environmental Crosswind Effects to Airflow Rate in Wet Cooling Tower, Proc. ASME 2011 Power Conference Collocated with JSME ICOPE, 2011.
  12. J. Ruiz, C.G. Cutillas, A.S. Kaiser, Experimental study of drift deposition from mechanical draft cooling towers in urban environments, Energy Buildings, 125 (2016) 181–195.
  13. E.A. Davis, Environmental Assessment of Chalk Point Cooling Tower Drift and Vapor Emissions, Final report, 1979.
  14. P.A. Jallouk, J.G.J. Kidd, T. Shapiro, Environmental aspects of cooling tower operation: survey of the emission, transport, and deposition of drift from the K-31 and K-33 cooling towers at ORGDP, Report, 1974.
  15. R.N. Meroney, CFD prediction of cooling tower drift, J. Wind Eng. Ind. Aerodyn., 94 (2006) 463–490.
  16. R.N. Meroney, Protocol for CFD prediction of cooling-tower drift in an urban environment, J. Wind Eng. Ind. Aerodyn., 96 (2008) 1789–1804.
  17. M. Lucas, P.J. Martínez, J. Ruiz, On the influence of psychrometric ambient conditions on cooling tower drift deposition, Int. J. Heat Mass Transfer., 53 (2010) 594–604.
  18. A.J. Consuegro, A.S. Kaiser, B. Zamora, A. Viedma, F. Sánchez, M. Hernández, M. Lucas, J. Ruiz, CFD modelling of Legionella’s atmospheric dispersion in the explosive outbreak in Murcia, Spain, 38 (2017) 1063–1072.
  19. R.A. Carhart, A.J. Policastro, A second-generation model for cooling tower plume rise and dispersion—I. Single sources, Atmos. Environ. Part A, 25 (1991) 1559–1576.
  20. R.A. Carhart, A.J. Policastro, W.E. Dunn, Improved method for predicting seasonal and annual shadowing from cooling-tower plumes, Atmos. Environ., 26 (1981) 2845–2852.
  21. H.D. Orville, J.H. Hirsch, L.E. May, Application of a cloud model to cooling tower plumes and clouds, J. Appl. Meteorol. Clim., 19 (1980) 1260–1272.
  22. A. Policastro, W. Dunn, R. Carhart, Studies on Mathematical Models for Characterizing Plume and Drift Behavior from Cooling Towers, Executive Summary, 1981.
  23. A.J. Policastro, L. Coke, M. Wastag, User’s Manual: Cooling- Tower-Plume Prediction Code, Ai Memo N, 1984.
  24. A.J. Policastro, W.E. Dunn, R.A. Carhart, A model for seasonal and annual cooling tower impacts, Atmos. Environ., 28 (1994) 379–395.
  25. J. Lee, Evaluation of impacts of cooling tower design properties on the near-field environment, Nucl. Eng. Des., 326 (2018) 65–78.
  26. W.E. Dunn, P. Gavin, B. Boughton, Studies on Mathematical Models for Characterizing Plume and Drift Behavior from Cooling Towers, Vol. 3, Mathematical Model for Single-source (Single-tower) Cooling Tower Drift Dispersion, 1981.
  27. E.J. Mlawer, S.J. Taubman, P.D. Brown, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave, J. Geophys. Res., 102 (1997) 16663–16682.
  28. S.Y. Hong, Y. Noh, J. Dudhia, A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134 (2006) 2318.
  29. F. Chen, J. Dudhia, Coupling an Advanced Land Surface Hydrology Model with the Penn State NCAR MM5 Modeling System, Part I: Model Implementation and Sensitivity, Mon. Weather Rev., 129 (2001) 569–585.
  30. J.S. Kain, The Kain Fritsch convective parameterization: an update, J. Appl. Meteorol. Clim., 43 (2004) 170–181.
  31. S.Y. Hong, J. Dudhia, S.H. Chen, A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132 (2004) 103–120.
  32. Office of Nuclear Reactor Regulation, Standard Review Plans for Environmental Reviews for Nuclear Power Plants: Environmental Standard Review Plan(NUREG-1555), 2013.