References

  1. M. Yang, Y. Huang, Q. Yue, H. Cao, X. Li, Y. Lin, Preparation of a novel polymeric adsorbent and its adsorption of phenol in aqueous solution, Desal. Wat. Treat., 57 (2016) 13295–13306.
  2. S. Reiße, D. Garbe, T. Brück, Identification and characterization of a highly thermostable crotonase from Meiothermus ruber, J. Mol. Catal. B Enzym., 112 (2015) 40–44.
  3. C. Ding, X. Zhang, C. Li, X. Hao, Y. Wang, G. Guan, ZIF-8 incorporated polyether block amide membrane for phenol permselective pervaporation with high efficiency, Sep. Purif. Technol., 166 (2016) 252–261.
  4. J.G. Wijmans, Process performance = membrane properties + operating conditions, J. Membr. Sci., 220 (2003) 1–3.
  5. R.W. Baker, J.G. Wijmans, Y. Huang, Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data, J. Membr. Sci., 348 (2010) 346–352.
  6. H. Tan, Y. Wu, T. Li, Pervaporation of n-butanol aqueous solution through ZSM-5-PEBA composite membranes, J. Appl. Polym. Sci., 129 (2013) 105–112.
  7. N. Abdehagh, F.H. Tezel, J. Thibault, Separation techniques in butanol production: challenges and developments, Biomass Bioenergy, 60 (2014) 222–246.
  8. A. Rozicka, J. Niemistö, R.L. Keiski, W. Kujawski, Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures, J. Membr. Sci., 453 (2014) 108–118.
  9. S. Hu, W. Ren, D. Cai, T.C. Hughes, P. Qin, T. Tan, A mixed matrix membrane for butanol pervaporation based on micronsized silicalite-1 as macro-crosslinkers, J. Membr. Sci., 533 (2017) 270–278.
  10. X. Liu, Y. Li, Y. Liu, G. Zhu, J. Liu, W. Yang, Capillary supported ultrathin homogeneous silicalite-poly(dimethylsiloxane) nanocomposite membrane for bio-butanol recovery, J. Membr. Sci., 369 (2011) 228–232.
  11. H. Zhou, Y. Su, X. Chen, S. Yi, Y. Wan, Modification of silicalite-1 by vinyltrimethoxysilane (VTMS) and preparation of silicalite-1 filled polydimethylsiloxane (PDMS) hybrid pervaporation membranes, Sep. Purif. Technol., 75 (2010) 286–294.
  12. X. Zhuang, X. Chen, Y. Su, J. Luo, S. Feng, H. Zhou, Y. Wan, Surface modification of silicalite-1 with alkoxysilanes to improve the performance of PDMS/silicalite-1 pervaporation membranes: preparation, characterization and modeling, J. Membr. Sci., 499 (2016) 386–395.
  13. H. Yin, C.Y. Lau, M. Rozowski, C. Howard, Y. Xu, T. Lai, M.E. Dose, R.P. Lively, M.L. Lind, Free-standing ZIF-71/PDMS nanocomposite membranes for the recovery of ethanol and 1-butanol from water through pervaporation, J. Membr. Sci., 529 (2017) 286–292.
  14. I.L. Borisov, A.O. Malakhov, V.S. Khotimsky, E.G. Litvinova, E.S. Finkelshtein, N.V. Ushakov, V.V. Volkov, Novel PTMSPbased membranes containing elastomeric fillers: enhanced 1-butanol/water pervaporation selectivity and permeability, J. Membr. Sci., 466 (2014) 322–330.
  15. L. Gao, M. Alberto, P. Gorgojo, G. Szekely, P.M. Budd, Highflux PIM-1/PVDF thin film composite membranes for 1-butanol/ water pervaporation, J. Membr. Sci., 529 (2017) 207–214.
  16. S.J. Han, F.C. Ferreira, A. Livingston, Membrane aromatic recovery system (MARS) - a new membrane process for the recovery of phenols from wastewaters, J. Membr. Sci., 188 (2001) 219–233.
  17. P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams, J. Membr. Sci., 190 (2001) 147–157.
  18. P. Wu, R.W. Field, B.J. Brisdon, R. England, S.J. Barkley, Optimisation of organofunction PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams, Sep. Purif. Technol., 22–23 (2001) 339–345.
  19. H. Ye, X. Yan, X. Zhang, W. Song, Pervaporation properties of oleyl alcohol-filled polydimethylsiloxane membranes for the recovery of phenol from wastewater, Iran. Polym. J., 26 (2017) 639–649.
  20. X. Hao, M. Pritzker, X. Feng, Use of pervaporation for the separation of phenol from dilute aqueous solutions, J. Membr. Sci., 335 (2009) 96–102.
  21. C. Li, X. Zhang, X. Hao, X. Feng, X. Pang, H. Zhang, Thermodynamic and mechanistic studies on recovering phenol crystals from dilute aqueous solutions using pervaporation–crystallization coupling (PVCC) system, Chem. Eng. Sci., 127 (2015) 106–114.
  22. B. Sinha, U.K. Ghosh, N.C. Pradhan, B. Adhikari, Separation of phenol from aqueous solution by membrane pervaporation using modified polyurethaneurea membranes, J. Appl. Polym. Sci., 101 (2006) 1857–1865.
  23. T. Gupta, N.C. Pradhan, B. Adhikari, Separation of phenol from aqueous solution by pervaporation using HTPB-based polyurethaneurea membrane, J. Membr. Sci., 217 (2003) 43–53.
  24. S. Das, A.K. Banthia, B. Adhikari, Porous polyurethane urea membranes for pervaporation separation of phenol and chlorophenols from water, Chem. Eng. J., 138 (2008) 215–223.
  25. H. Ye, J. Wang, Y. Wang, X. Chen, S. Shi, Effects of simultaneous chemical cross-linking and physical filling on separation performances of PU membranes, Iran. Polym. J., 22 (2013) 623–633.
  26. W. Kujawski, A. Warszawski, W.O. Ratajczak, T. Porbski, W.A. Capa, I. Ostrowska, Application of pervaporation and adsorption to the phenol removal from wastewater, Sep. Purif. Technol., 40 (2004) 123–132.
  27. T. Gupta, N.C. Pradhan, B. Adhikari, Synthesis and performance of a novel polyurethaneurea as pervaporation membrane for the selective removal of phenol from industrial waste water, Bull. Mater. Sci., 25 (2002) 533–536.
  28. H. Ye, J. Wang, Synthesis, characterization and separation properties of novel PU membranes crosslinked by β-cyclodextrin, J. Polym. Eng., 33 (2013) 285–292.
  29. H. Ye, X. Zhang, Z. Zhao, B. Song, Z. Zhang, W. Song, Pervaporation performance of surface-modified zeolite/PU mixed matrix membranes for separation of phenol from water, Iran. Polym. J., 26 (2017) 193–203.
  30. P. Das, S.K. Ray, Pervaporative recovery of tetrahydrofuran from water with plasticized and filled polyvinylchloride membranes, J. Ind. Eng. Chem., 34 (2016) 321–336.
  31. T. Uragami, Y. Matsuoka, T. Miyata, Permeation and separation characteristics in removal of dilute volatile organic compounds from aqueous solutions through copolymer membranes consisted of poly(styrene) and poly(dimethylsiloxane) containing a hydrophobic ionic liquid by pervaporation, J. Membr. Sci., 506 (2016) 109–118.
  32. T. Uragami, E. Fukuyama, T. Miyata, Selective removal of dilute benzene from water by poly(methyl methacrylate)-graftpoly(dimethylsiloxane) membranes containing hydrophobic ionic liquid by pervaporation, J. Membr. Sci., 510 (2016) 131–140.
  33. A. Keshav, K.L. Wasewar, S. Chand, Extraction of acrylic, propionic, and butyric acid using Aliquat 336 in oleyl alcohol: equilibria and effect of temperature, Ind. Eng. Chem. Res., 48 (2009) 888–893.
  34. G. Bumbac, A.M. Dumitrescu, Process modelling and simulation for 1-butanol removing from fermentation broth by extraction with oleyl alcohol, Rev. Chim., 63 (2012) 727–729.
  35. R. Jiraratananon, P. Sampranpiboon, D. Uttapap, R.Y.M. Huang, Pervaporation separation and mass transport of ethylbutanoate solution by polyether block amide (PEBA) membranes, J. Membr. Sci., 210 (2002) 389–409.
  36. Y. Wang, T.S. Chung, B.W. Neo, M. Gruender, Processing and engineering of pervaporation dehydration of ethylene glycol via dual-layer polybenzimidazole (PBI)/polyetherimide (PEI) membranes, J. Membr. Sci., 378 (2011) 339–350.
  37. G. Genduso, H. Farrokhzad, Y. Latré, S. Darvishmanesh, P. Luis, B.V.D. Bruggen, Polyvinylidene fluoride dense membrane for the pervaporation of methyl acetate–methanol mixtures, J. Membr. Sci., 482 (2015) 128–136.
  38. T. Atoguchi, T. Kanougi, T. Yamamoto, S. Yao, Phenol oxidation into catechol and hydroquinone over H-MFI, H-MOR, H-USY and H-BEA in the presence of ketone, J. Mol. Catal. A Chem., 220 (2004) 183–187.
  39. X.M. Wu, H. Guo, F. Soyekwo, Q.G. Zhang, C.X. Lin, Q.L. Liu, A.M. Zhu, Pervaporation purification of ethylene glycol using the highly permeable PIM-1 membrane, J. Chem. Eng. Data, 61 (2016) 579–586.
  40. T. Borjigin, F. Sun, J. Zhang, K. Cai, H. Ren, G. Zhu, A microporous metal-organic framework with high stability for GC separation of alcohols from water, Chem. Commun., 48 (2012) 7613.
  41. A.F.M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, CRC Press, Florida, USA, 1991.
  42. L.L. Ngoc, Y. Wang, T. Chung, Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation, J. Membr. Sci., 379 (2011) 174–183.
  43. W.F. Guo, T.S. Chung, T. Matsuuraa, Pervaporation study on the dehydration of aqueous butanol solutions: a comparison of flux vs. permeance, separation factor vs. selectivity, J. Membr. Sci., 245 (2004) 199–210.
  44. J. Shen, Y. Chu, H. Ruan, L. Wu, C. Gao, B. Van der Bruggen, Pervaporation of benzene/cyclohexane mixtures through mixed matrix membranes of chitosan and Ag+/carbon nanotubes, J. Membr. Sci., 462 (2014) 160–169.
  45. S. Xu, Y. Wang, Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation, J. Membr. Sci., 496 (2015) 142–155.
  46. D. Hua, Y.K. Ong, Y. Wang, T. Yang, T. Chung, ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol, J. Membr. Sci., 453 (2014) 155–167.
  47. F. Wu, L. Lin, H. Liu, H. Wang, J. Qiu, X. Zhang, Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth, J. Membr. Sci., 544 (2017) 342–350.
  48. X. Feng, R.Y.M. Huang, Estimation of activation energy for permeation in pervaporation processes, J. Membr. Sci., 118 (1996) 127–131.