References
- Y. Oren, Capacitive deionization (CDI) for desalination
and water treatment—past, present and future (a review),
Desalination, 228 (2008) 10–29.
- Y. Chen, M. Yue, Z.H. Huang, Electrospun carbon nanofiber
networks from phenolic resin for capacitive deionization,
Chem. Eng. Mater., 252 (2014) 8–15.
- H.B. Li, L. Zou, Ion-exchange membrane capacitive deionization:
a new strategy for brackish water desalination, Desalination,
275 (2014) 62–66.
- P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory
of membrane capacitive deionization including the effect of
the electrode pore space, J. Colloid Interface Sci., 360 (2011)
239–248.
- M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization
as an electrochemical means of saving energy and delivering
clean water. Comparison to present desalination practices: will
it compete? Electrochim. Acta, 55 (2010) 3845–3856.
- A. Emmatifar, J.W. Palko, M. Stadermann, J.G. Santiago, Energy
breakdown in capacitive deionization, Water Res., 104 (2016)
303–311.
- S.M. Jung, J.H. Choi, J.H. Kim, Application of capacitive
deionization (CDI) technology to insulin purification process,
Sep. Purif. Technol., 98 (2012) 31–35.
- S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel,
Review on the science and technology of water desalination by
capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
- I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach,
Long term stability of capacitive de-ionization processes
for water desalination: the challenge of positive electrodes
corrosion, Electrochim. Acta, 106 (2013) 91–100.
- G. Wang, C. Pan, L.P. Wang, Q. Dong, C. Yu, Z.B. Zhao, J.S. Qiu,
Activated carbon nanofiber webs made by electrospinning for
capacitive deionization, Electrochim. Acta, 69 (2012) 65–70.
- W. Huang, Y.M. Zhang, S.X. Bao, R. Cruzb, S.X. Song,
Desalination by capacitive deionization process using nitric
acid-modified activated carbon as the electrodes, Desalination,
340 (2014) 67–72.
- K.H. Park, D.H. Kwak, Electrosorption and electrochemical
properties of activated-carbon sheet electrode for capacitive
deionization, J. Electroanal. Chem., 732 (2014) 66–73.
- G. Wang, B.Q. Qian, Q. Dong, J.Y. Yang, Z.B. Zhao, J.S. Qiu,
Highly mesoporous activated carbon electrode for capacitive
deionization, Sep. Purif. Technol., 103 (2013) 216–221.
- M. Haro, G. Rasines, C. Macias, C.O. Ania, Stability of a carbon
gel electrode when used for the electro-assisted removal of ions
from brackish water, Carbon, 49 (2011) 3723–3730.
- L. Zou, L.X. Li, H.H. Song, G. Morris, Using mesoporous carbon
electrodes for brackish water desalination, Water Res., 42 (2008)
2340–2348.
- H. Oda, Y. Nakagawa, Removal of ionic substances from dilute
solution using activated carbon electrodes, Carbon, 41 (2003)
1037–1047.
- K. Sharma, R.T. Mayes, J.O. Kiggans, Jr., S. Yiacoumi, J. Gabitto,
D.W. DePaoli, S. Dai, C. Tsouris, Influence of temperature
on the electrosorption of ions from aqueous solutions using
mesoporous carbon materials, Sep. Purif. Technol., 116 (2013)
206–213.
- R. Zhao, S. Porada, P.M. Biesheuvel, A. van der Wal, Energy
consumption in membrane capacitive deionization for different
water recoveries and flow rates, and comparison with reverse
osmosis, Desalination, 330 (2013) 35–41.
- O.N. Demirer, R.M. Naylor, C.A.R. Perez, E. Wilkes, C. Hidrovo,
Energetic performance optimization of a capacitive deionization
system operating with transient cycles and brackish water,
Desalination, 314 (2013) 130–138.
- X. Gao, A. Omosebi, J. Landon, K.L. Liu, Enhancement of charge
efficiency for a capacitive deionization cell using carbon xerogel
with modified potential of zero charge, Electrochem. Commun.,
39 (2014) 22–25.
- C.C. Huang, J.C. He, Electrosorptive removal of copper
ions from wastewater by using ordered mesoporous carbon
electrodes, Chem. Eng. J., 221 (2013) 469–475.
- J.J. Lado, R.E. Pérez-Roa, J.J. Wouters, M.I. Tejedor-Tejedor, M.A.
Anderson, Evaluation of operational parameters for a capacitive
deionization reactor employing asymmetric electrodes, Sep.
Purif. Technol., 133 (2014) 236–245.
- M.W. Ryoo, G. Seo, Improvement in capacitive deionization
function of activated carbon cloth by titania modification, Water
Res., 37 (2003) 1527–1534.
- L. Zou, G. Morris, D. Qi, Using activated carbon electrode in
electrosorptive deionization of brackish water, Desalination,
225 (2008) 329–340.
- L.K. Pan, X.Z. Wang, Y. Gao, Y.P. Zhang, Y.W. Chen, Z. Sun,
Electrosorption of anions with carbon nanotube and nanofibre
composite film electrodes, Desalination, 244 (2009) 139–143.
- L.C. Han, K.G. Karthikeyan, M.A. Anderson, J.J. Wouters, K.B.
Gregory, Mechanistic insights into the use of oxide nanoparticles
coated asymmetric electrodes for capacitive deionization,
Electrochim. Acta, 90 (2013) 573–581.
- M.T.Z. Myint, J. Dutta, Fabrication of zinc oxide nanorods
modified activated carbon cloth electrode for desalination
of brackish water using capacitive deionization approach,
Desalination, 305 (2012) 24–30.
- M.E. Suss, T.F. Bauman, M.A. Worsley, K.A. Rose, T.F. Jaramillo,
M. Stadermann, J.G. Santiago, Impedance-based study of
capacitive porous carbon electrodes with hierarchical and
bimodal porosity, J. Power Sources, 241 (2013) 266–273.
- H. Ab, M. Kubota, M. Nemoto, Y. Masuda, Y. Tanaka, H.
Munakata, K. Kanamura, High-capacity thick cathode with
a porous aluminum current collector for lithium secondary
batteries, J. Power Sources, 334 (2016) 78–85.
- E. Cho, J.Y. Mun, O.B. Chae, O.M. Kwon, H.T. Kim, J.H. Ryu,
Y.G. Kim, S.M. Oh, Corrosion/passivation of aluminum current
collector in bis(fluorosulfonyl) imide-based ionic liquid for
lithium-ion batteries, Electrochem. Commun., 22 (2012) 1–3.
- B. Bhujun, M.T.T. Tan, A.S. Shanmugam, Evaluation of
aluminium doped spinel ferrite electrodes for supercapacitors,
Ceramics Int., 42 (2016) 6457–6466.
- M. Li, F. Liu, J.P. Cheng, J. Ying, X.B. Zhang, Enhanced
performance of nickel–aluminum layered double hydroxide
nanosheets/carbon nanotubes composite for supercapacitor and
asymmetric capacitor, J. Alloys Compd., 635 (2015) 225–232.
- S.W. Woo, S.T. Myung, H. Bang, D.W. Kim, Y.K. Sun,
Improvement of electrochemical and thermal properties of
Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple
metal (Al, Mg) substitution, Electrochim. Acta, 54 (2009)
3851–3856.
- Y.I. Hsu, K. Masutani, T. Yamaoka, Y. Kimura, Strengthening
of hydrogels made from enantiomeric block copolymers of
polylactide (PLA) and PEG by the chain extending DielseAlder
reaction at the hydrophilic PEG terminals, Polymer, 67 (2015)
157–166.
- G.Z. Li, J.X. Li, W. Tan, H. Jin, H.X. Yang, J.H. Peng, C.J.
Barrow, M. Yang, H.B. Wang, W.R. Yang, Preparation and
characterization of the hydrogen storage activated carbon from
coffee shell by microwave irradiation and KOH activation, Int.
Biodeterior. Biodegrad., 113 (2016) 386–390.
- A.M. Dehkhoda, E. Gyenge, N. Ellis, A novel method to
tailor the porous structure of KOH-activated biochar and its
application in capacitive deionization and energy storage,
Biomass Bioenergy, 87 (2016) 107–121.
- J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau,
Studies and characterisations of various activated carbons used
for carbon/carbon supercapacitors, J. Power Sources, 101 (2001)
109–116.
- X.X. Zhang, F. Ran, H.L. Fana, Y.T. Tan, L. Zhao, X.M. Lia, L.B.
Kong, L. Kang, A dandelion-like carbon microsphere/MnO2
nanosheets composite for supercapacitors, J. Energy Chem., 23
(2014) 82–90.
- C.W. Liew, S. Ramesh, Studies on ionic liquid-based corn starch
biopolymer electrolytes coupling with high ionic transport
number, Cellulose, 20 (2013) 3227–3237.
- H.B. Li, L.K. Pan, Y.P. Zhang, L. Zou, C.Q. Sun, Y.K. Zhan, Z.
Sun, Kinetics and thermodynamics study for electrosorption of
NaCl onto carbon nanotubes and carbon nanofibers electrodes,
Chem. Phys. Lett., 485 (2010) 161–166.