References

  1. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 228 (2008) 10–29.
  2. Y. Chen, M. Yue, Z.H. Huang, Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization, Chem. Eng. Mater., 252 (2014) 8–15.
  3. H.B. Li, L. Zou, Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination, Desalination, 275 (2014) 62–66.
  4. P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 360 (2011) 239–248.
  5. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochim. Acta, 55 (2010) 3845–3856.
  6. A. Emmatifar, J.W. Palko, M. Stadermann, J.G. Santiago, Energy breakdown in capacitive deionization, Water Res., 104 (2016) 303–311.
  7. S.M. Jung, J.H. Choi, J.H. Kim, Application of capacitive deionization (CDI) technology to insulin purification process, Sep. Purif. Technol., 98 (2012) 31–35.
  8. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  9. I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach, Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion, Electrochim. Acta, 106 (2013) 91–100.
  10. G. Wang, C. Pan, L.P. Wang, Q. Dong, C. Yu, Z.B. Zhao, J.S. Qiu, Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta, 69 (2012) 65–70.
  11. W. Huang, Y.M. Zhang, S.X. Bao, R. Cruzb, S.X. Song, Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes, Desalination, 340 (2014) 67–72.
  12. K.H. Park, D.H. Kwak, Electrosorption and electrochemical properties of activated-carbon sheet electrode for capacitive deionization, J. Electroanal. Chem., 732 (2014) 66–73.
  13. G. Wang, B.Q. Qian, Q. Dong, J.Y. Yang, Z.B. Zhao, J.S. Qiu, Highly mesoporous activated carbon electrode for capacitive deionization, Sep. Purif. Technol., 103 (2013) 216–221.
  14. M. Haro, G. Rasines, C. Macias, C.O. Ania, Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water, Carbon, 49 (2011) 3723–3730.
  15. L. Zou, L.X. Li, H.H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water Res., 42 (2008) 2340–2348.
  16. H. Oda, Y. Nakagawa, Removal of ionic substances from dilute solution using activated carbon electrodes, Carbon, 41 (2003) 1037–1047.
  17. K. Sharma, R.T. Mayes, J.O. Kiggans, Jr., S. Yiacoumi, J. Gabitto, D.W. DePaoli, S. Dai, C. Tsouris, Influence of temperature on the electrosorption of ions from aqueous solutions using mesoporous carbon materials, Sep. Purif. Technol., 116 (2013) 206–213.
  18. R. Zhao, S. Porada, P.M. Biesheuvel, A. van der Wal, Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 330 (2013) 35–41.
  19. O.N. Demirer, R.M. Naylor, C.A.R. Perez, E. Wilkes, C. Hidrovo, Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water, Desalination, 314 (2013) 130–138.
  20. X. Gao, A. Omosebi, J. Landon, K.L. Liu, Enhancement of charge efficiency for a capacitive deionization cell using carbon xerogel with modified potential of zero charge, Electrochem. Commun., 39 (2014) 22–25.
  21. C.C. Huang, J.C. He, Electrosorptive removal of copper ions from wastewater by using ordered mesoporous carbon electrodes, Chem. Eng. J., 221 (2013) 469–475.
  22. J.J. Lado, R.E. Pérez-Roa, J.J. Wouters, M.I. Tejedor-Tejedor, M.A. Anderson, Evaluation of operational parameters for a capacitive deionization reactor employing asymmetric electrodes, Sep. Purif. Technol., 133 (2014) 236–245.
  23. M.W. Ryoo, G. Seo, Improvement in capacitive deionization function of activated carbon cloth by titania modification, Water Res., 37 (2003) 1527–1534.
  24. L. Zou, G. Morris, D. Qi, Using activated carbon electrode in electrosorptive deionization of brackish water, Desalination, 225 (2008) 329–340.
  25. L.K. Pan, X.Z. Wang, Y. Gao, Y.P. Zhang, Y.W. Chen, Z. Sun, Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes, Desalination, 244 (2009) 139–143.
  26. L.C. Han, K.G. Karthikeyan, M.A. Anderson, J.J. Wouters, K.B. Gregory, Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization, Electrochim. Acta, 90 (2013) 573–581.
  27. M.T.Z. Myint, J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination, 305 (2012) 24–30.
  28. M.E. Suss, T.F. Bauman, M.A. Worsley, K.A. Rose, T.F. Jaramillo, M. Stadermann, J.G. Santiago, Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity, J. Power Sources, 241 (2013) 266–273.
  29. H. Ab, M. Kubota, M. Nemoto, Y. Masuda, Y. Tanaka, H. Munakata, K. Kanamura, High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries, J. Power Sources, 334 (2016) 78–85.
  30. E. Cho, J.Y. Mun, O.B. Chae, O.M. Kwon, H.T. Kim, J.H. Ryu, Y.G. Kim, S.M. Oh, Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl) imide-based ionic liquid for lithium-ion batteries, Electrochem. Commun., 22 (2012) 1–3.
  31. B. Bhujun, M.T.T. Tan, A.S. Shanmugam, Evaluation of aluminium doped spinel ferrite electrodes for supercapacitors, Ceramics Int., 42 (2016) 6457–6466.
  32. M. Li, F. Liu, J.P. Cheng, J. Ying, X.B. Zhang, Enhanced performance of nickel–aluminum layered double hydroxide nanosheets/carbon nanotubes composite for supercapacitor and asymmetric capacitor, J. Alloys Compd., 635 (2015) 225–232.
  33. S.W. Woo, S.T. Myung, H. Bang, D.W. Kim, Y.K. Sun, Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution, Electrochim. Acta, 54 (2009) 3851–3856.
  34. Y.I. Hsu, K. Masutani, T. Yamaoka, Y. Kimura, Strengthening of hydrogels made from enantiomeric block copolymers of polylactide (PLA) and PEG by the chain extending DielseAlder reaction at the hydrophilic PEG terminals, Polymer, 67 (2015) 157–166.
  35. G.Z. Li, J.X. Li, W. Tan, H. Jin, H.X. Yang, J.H. Peng, C.J. Barrow, M. Yang, H.B. Wang, W.R. Yang, Preparation and characterization of the hydrogen storage activated carbon from coffee shell by microwave irradiation and KOH activation, Int. Biodeterior. Biodegrad., 113 (2016) 386–390.
  36. A.M. Dehkhoda, E. Gyenge, N. Ellis, A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage, Biomass Bioenergy, 87 (2016) 107–121.
  37. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources, 101 (2001) 109–116.
  38. X.X. Zhang, F. Ran, H.L. Fana, Y.T. Tan, L. Zhao, X.M. Lia, L.B. Kong, L. Kang, A dandelion-like carbon microsphere/MnO2 nanosheets composite for supercapacitors, J. Energy Chem., 23 (2014) 82–90.
  39. C.W. Liew, S. Ramesh, Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with high ionic transport number, Cellulose, 20 (2013) 3227–3237.
  40. H.B. Li, L.K. Pan, Y.P. Zhang, L. Zou, C.Q. Sun, Y.K. Zhan, Z. Sun, Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes, Chem. Phys. Lett., 485 (2010) 161–166.