References

  1. P. Lu, S. Liang, T. Zhou, X. Mei, Y. Zhang, C. Zhang, A. Umar, H. Wang, Q. Wang, Typical thin-film composite (TFC) membranes modified with inorganic nanomaterials for forward osmosis: a review, Nanosci. Nanotechnol. Lett., 8 (2016) 906–916.
  2. J.J. Qin, W.C.L. Lay, K.A. Kekre, Recent developments and future challenges of forward osmosis for desalination: a review, Desal. Wat. Treat., 39 (2012) 123–136.
  3. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  4. N.K. Saha, S.V. Joshi, Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type, J. Membr. Sci., 342 (2009) 60–69.
  5. T. Sasaki, H. Fujimaki, T. Uemura, M. Kurihara, Interfacially Synthesized Reverse Osmosis Membrane, US Patent number 4,277,344, 1981.
  6. K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci., 370 (2011) 1–22.
  7. W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, A recent progress in thin film composite membrane: a review, Desalination, 287 (2012) 190–199.
  8. D. Li, Y. Yan, H. Wang, Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes, Prog. Polym. Sci., 61 (2016) 104–155.
  9. J. Wei, C. Qiu, C.Y. Tang, R. Wang, A.G. Fane, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372 (2011) 292–302.
  10. P.H. Duong, S. Chisca, P.Y. Hong, H. Cheng, S.P. Nunes, T.S. Chung, Hydroxyl functionalized polytriazole-copolyoxadiazole as substrates for forward osmosis membranes, ACS Appl. Mater. Interfaces, 7 (2015) 3950–3973.
  11. P. Sukitpaneenit, T.S. Chung, High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production, Environ. Sci. Technol., 46 (2012) 7356–7365.
  12. W. Fang, R. Wang, S. Chou, L. Setiawan, A.G. Fane, Composite forward osmosis hollow fiber membranes: integration of ROand NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization, J. Membr. Sci., 394–395 (2012) 140–150.
  13. N.N. Bui, J.R. Mccutcheon, Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis, Environ. Sci. Technol., 47 (2012) 1761–1769.
  14. R.W. Baker, Membrane Technology and Applications, 3rd ed., Wiley, NewYork, 2012, pp. 97–247.
  15. R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83 (1993) 81–150.
  16. R.X. Zhang, J. Vanneste, L. Poelmans, B.V.D. Bruggen, Effect of the manufacturing conditions on the structureand performance of thin-film composite membranes, J. Appl. Polym. Sci., 125 (2012) 3755–3769.
  17. S.H. Maruf, A.R. Greenberg, J. Pellegrino, Y. Ding, Fabrication and characterization of a surface-patterned thin film composite membrane, J. Membr. Sci., 452 (2014) 11–19.
  18. C.Y. Tang, Y.N. Kwon, J.O. Leckie, Effect of membrane chemistry andcoating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination, 242 (2009) 168–182.
  19. A.K. Ghosh, B.H. Jeong, X. Huang, E.M.V. Hoek, Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties, J. Membr. Sci., 311 (2008) 34–45.
  20. T. Kamada, T. Ohara, T. Shintani, T. Tsuru, Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux, J. Membr. Sci., 467 (2014) 303–312.
  21. I.C. Kim, J. Jegal, K.H. Lee, Effect of aqueous and organic solutions on the performance of polyamide thin-film-composite nanofiltration membranes, J. Polym. Sci., Part B: Polym. Phys., 40 (2002) 2151–2163.
  22. I.C. Kim, B.R. Jeong, S.J. Kim, K.H. Lee, Preparation of high flux thinfilm composite polyamide membrane: the effect of alkyl phosphate additives during interfacial polymerization, Desalination, 308 (2013) 111–114.
  23. C. Kong, M. Kanezashi, T. Yamomoto, T. Shintani, T. Tsuru, Controlled synthesis of high performance polyamide membrane with thindense layer for water desalination, J. Membr. Sci., 362 (2010) 76–80.
  24. C. Klaysom, S. Hermans, A. Gahlaut, S. Van Craenenbroeck, I. Vankelecom, Polyamide/polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: film optimization, characterization and performance evaluation, J. Membr. Sci., 445 (2013) 25–33.
  25. F. Yan, H. Chen, Y. Lu, Z. Lu, S. Yu, M. Liu, C. Gao, Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine, J. Membr. Sci., 513 (2016) 108–116.
  26. A.P. Rao, N.V. Desai, R. Rangarajan, Interfacially synthesized thin film composite RO membranes for seawater desalination, Appl. Polym., 10 (2016) 44130.
  27. M.A. Kuehne, R.Q. Song, N.N. Li, W.W.S. Ho, R.J. Petersen, Flux Enhancement in TFC RO Membranes, Joint China/USA Chemical Engineering Conference, 20 (2000) 23–26.
  28. F. Wu, X. Liu, C. Au, Effects of DMSO and glycerol additives on the property of polyamide reverse osmosis membrane, Water Sci. Technol., 74 (2016) 1619–1625.
  29. P. Gorgojo, M.F. Jimenez-Solomon, A.G. Livingston, Polyamide thin film composite membranes on cross-linked polyimide supports: improvement of RO performance via activating solvent, Desalination, 344 (2014) 181–188.
  30. X. Lu, L.H.A. Chavez, J. Ma, M. Elimelech, Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes, Environ. Sci. Technol,, 49 (2015) 1436–1444.
  31. Y. Cui, X.Y. Liu, T.S. Chung, Ultrathin polyamide membranes fabricated from free-standing interfacial polymerization: synthesis, modifications and post-treatment, Ind. Eng. Chem. Res., 56 (2017) 513–523.
  32. C.J. van Oss, Development and applications of the interfacial tension between water and organic or biological surfaces, Colloids Surf., B, 54 (2007) 2–9.
  33. G.N. Lewis, Valence and the structure of atoms and molecules, Phys. Teach., 31 (1968) 435–443.
  34. S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang, M. Elimelech, Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles, ACS Appl. Mater. Interfaces, 5 (2013) 6694–6703.
  35. F.M. Fowkes, Additivity of intermolecular forces at interfaces. I. determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids, J. Phys. Chem., 67 (1963) 2538–2541.
  36. P. Lu, S. Liang, L. Qiu, Y. Gao, Q. Wang, Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates, J. Membr. Sci., 504 (2016) 196–205.
  37. A. Docoslis, R.F. Giese, C.J.V. Oss, Influence of the water–air interface on the apparent surface tension of aqueous solutions of hydrophilic solutes, Colloids Surf., B, 19 (2000) 147–162.
  38. G. Hurwitz, G.R. Guille, E.M.V. Hoek, Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements, J. Membr. Sci., 349 (2010) 349–357.
  39. A. Tiraferri, N.Y.Yip, A.P. Straub, S. Romero-Vargas Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, J. Membr. Sci., 444 (2013) 523–538.
  40. Y. Wang, X. Li, C. Cheng, Y. He, J. Pan, T. Xu, Second interfacial polymerizationvon polyamide surface using aliphatic diamine with improved performance of TFC FO membranes, J. Membr. Sci., 498 (2016) 30–38.
  41. P. Lu, S. Liang, T. Zhou, X. Mei, Y. Zhang, C. Zhang, A. Umarbc, Q. Wang, Layered double hydroxide/graphene oxide hybrid incorporated polysulfone substrate for thin-film nanocomposite forward osmosis membranes, RSC Adv., 6 (2016) 56599–56609.
  42. L.L. Xia, C.L. Li, Y. Wang, In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations, J. Membr. Sci., 498 (2016) 263–275.
  43. S.H. Huang, Y.Y. Liu, Y.H. Huang, K.S. Liao, C.C. Hu, K.R. Lee, J.Y. Lai, Study on characterization and pervaporation performance of interfacially polymerized polyamide thinfilm composite membranes for dehydrating tetrahydrofuran, J. Membr. Sci., 470 (2014) 411–420.
  44. V. Freger, S. Srebnik, Mathematical model of charge and density distributions in interfacial polymerization of thin films, J. Appl. Polym. Sci., 88 (2003) 1162.
  45. D. Go´mez-Dı´az, J.C. Mejuto, J.M. Navaza, Physicochemical properties of liquid mixtures. 1. Viscosity, density, surface tension and refractive index of cyclohexane +2,2,4-trimethylpentane binary liquid systems from 25°C to 50°C, J. Chem. Eng. Data, 46 (2001) 720–724.
  46. N.N. Bui, M.L. Lind, E.M.V. Hoek, J.R. Mccutcheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis, J. Membr. Sci., 385–386 (2011) 10–19.
  47. H. Wang, L. Li, X. Zhang, S. Zhang, Polyamide thin-film composite membranes prepared from a novel triamine 3,5-diamino-N-(4-aminophenyl)-benzamide monomer and m-phenylenediamine, J. Membr. Sci., 353 (2010) 78–84.
  48. P. Hajighahremanzadeh, M. Abbaszadeh, S.A. Mousavi, M. Soltanieh, H. Bakhshi, Polyamide/polyacrylonitrile thin film composites as forward osmosis membranes, Appl. Polym., 10 (2016) 44130.
  49. A. Idris, F. Kormin, M. Suput, The effect of curing temperature on the performance of thin film composite membrane, J. Teknologi, 43 (2005) 51–64.
  50. I.J. Roh, J.J. Kim, S.Y. Park, Mechanical properties and reverse osmosis performance of interfacial polymerized polyamide thin films, J. Membr. Sci., 197 (2002) 199–210.
  51. D. Wu, S. Yu, D. Lawless, X. Feng, Thin film composite nanofiltration membranes fabricated from polymeric amine polyethylenimine imbedded with monomeric amine piperazine for enhanced salt separations, React. Funct. Polym., 86 (2015) 168–183.
  52. R. Ma, Y.L. Ji, X.D. Weng, Q.F. An, C.J. Gao, High-flux and fouling-resistant reverse osmosis membrane prepared with incorporating zwitterionic amine monomers via interfacial polymerization, Desalination, 381 (2016) 100–110.
  53. A.L. Ahmad, B.S. Ooi, Optimization of composite nanofiltration membrane through pH control: application in CuSO4 removal, Sep. Purif. Technol., 47 (2006) 162–172.
  54. P.W. Morgan, S.L. Kwolek, Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces, Polym. Sci., 34 (1996) 531–559.
  55. R. Nadler, S. Srebnik, Molecular simulation of polyamide synthesis by interfacial polymerization, J. Membr. Sci., 315 (2008) 100–105.
  56. D.J. Mohan, L. Kullová, A study on the relationship between preparation condition and properties/performance of polyamide TFC membrane by IR, DSC, TGA, and SEM techniques, Desal. Wat. Treat., 51 (2013) 586–596.