References
- I.S. Al-Mutaz, I. Wazeer, Comparative performance evaluation
of conventional multi-effect evaporation desalination processes,
Appl. Therm. Eng., 73 (2014) 1194–1203.
- I.S. Al-Mutaz, I. Wazeer, Optimization of location of thermocompressor suction in MED-TVC desalination plants,
Desal. Water Treat., 57 (2016) 26562–26576.
- I.S. Al-Mutaz, I. Wazeer, Development of a steady-state mathematical
model for MEE-TVC desalination plants, Desalination,
351 (2014) 9–18.
- I.S. Al-Mutaz, I. Wazeer, Economic optimization of the number
of effects for the multieffect desalination plant, Desal. Water
Treat., 56 (2015) 2269–2275.
- I.S. Al-Mutaz, I. Wazeer, Current status and future directions
of MED-TVC desalination technology, Desal. Water Treat., 55
(2015) 1–9.
- L. Henthorne, B. Boysen, State-of-the-art of reverse osmosis
desalination pretreatment, Desalination, 356 (2015) 129–139.
- A. Malek, M. Hawlader, J. Ho, Design and economics of RO
seawater desalination, Desalination, 105 (1996) 245–261.
- M. Elimelech, W.A. Phillip, The future of seawater desalination:
energy, technology, and the environment, Science, 333
(2011) 712–717.
- L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin,
Reverse osmosis desalination: water sources, technology, and
today’s challenges, Water Res., 43 (2009) 2317–2348.
- K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis
membrane materials for desalination—development to date
and future potential, J. Membr. Sci., 370 (2011) 1–22.
- S. Kim, E.M. Hoek, Modeling concentration polarization in
reverse osmosis processes, Desalination, 186 (2005) 111–128.
- M.G. Marcovecchio, P.A. Aguirre, N.J. Scenna, Global optimal
design of reverse osmosis networks for seawater desalination:
modeling and algorithm, Desalination, 184 (2005) 259–271.
- H.-J. Oh, T.-M. Hwang, S. Lee, A simplified simulation model
of RO systems for seawater desalination, Desalination, 238
(2009) 128–139.
- J. Fernández-Sempere, F. Ruiz-Beviá, P. García-Algado, R. Salcedo-Díaz, Experimental study of concentration polarization
in a crossflow reverse osmosis system using Digital Holographic
Interferometry, Desalination, 257 (2010) 36–45.
- A.I. Radu, J.S. Vrouwenvelder, M. Van Loosdrecht, C. Picioreanu,
Effect of flow velocity, substrate concentration and
hydraulic cleaning on biofouling of reverse osmosis feed channels,
Chem. Eng. J., 188 (2012) 30–39.
- W. Zhou, L. Song, T.K. Guan, A numerical study on concentration
polarization and system performance of spiral wound RO
membrane modules, J. Membr. Sci., 271 (2006) 38–46.
- A. Subramani, E.M. Hoek, Direct observation of initial microbial
deposition onto reverse osmosis and nanofiltration membranes,
J. Membr. Sci., 319 (2008) 111–125.
- D. Fletcher, D. Wiley, A computational fluids dynamics study
of buoyancy effects in reverse osmosis, J. Membr. Sci., 245
(2004) 175–181.
- I.S. Al-Mutaz, F.M. Alsubaie, Development of a mathematical
model for the prediction of concentration polarization in
reverse osmosis desalination processes, Desal. Water Treat., 71
(2017) 19–24.
- G. Schock, A. Miquel, Mass transfer and pressure loss in spiral
wound modules, Desalination, 64 (1987) 339–352.