References

  1. M. Kohno, M. Yamazaki, W.M. Kimura, Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli, Pathophysiology, 7(2) (2000) 143–148.
  2. O. Celik, N. Büyükuslu, C. Atak, A. Rzakoulieva, Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max (L.), Merr. Roots. Pol. J. Envirin. Stud., 18(2) (2009) 175–182.
  3. W. Gan, L.K. Gao, W.b. Zhang, Removal of oils from water surface via useful recyclable CoFe2O4/sawdust composites under magnetic field, Mater. Des., 98 (2016) 194–200.
  4. Q. Zhu, F. Tao, Q.M. Pan, Fast and selective removal of oils from water surface via highly hydrophobic core−shell Fe2O3@C nanoparticles under magnetic field, ACS. Appl. Mater. Interfaces, 2(11) (2010) 3141–3146.
  5. D.P. Small, Huener, P.A. Norman, W.K. Wan, Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae, Bioelectromagnetics, 33(4) (2012) 298–308.
  6. S.F. Zhang, W.Z. Wei, J.Z. Zhang, Y. Mao, S. Liu, Effect of static magnetic field on growth of Escherichia coli and relative response model of series piezoelectric quartz crystal, Anal, 127(3) (2002) 373–377.
  7. J. Li, Y.L. Yi, Y. Jiao, D.G. Zhang, C.L. Yuan, Effect of magnetic field on soil microbes and soil enzyine activities in brown earth, Chin. J. Soil Sci., 38 (2007) 957–961.
  8. H. Yavuz, S.S. AElebi, A typical application of magnetic field in wastewater treatment with fluidized bed biofilm reactor, Chem. Eng. Commun., 190(5–8) (2003) 599–609.
  9. J.T. Jung, S. Sofer, Enhancement of phenol biodegradation by south magnetic field exposure, J. Chem. Technol. Biotechnol., 70(3) (2015) 299–303.
  10. X.D. Leng, Oil Removal Efficiency and Mechanism Analysis of High Effective Oil-degrading Bacteria Enhanced by Magnetic Field. HIT, 2015.
  11. M. Kohno, M. Yamazaki, L.L. Kimura, M. Wada, Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli, Pathophysiology, 7(2) (2000) 143–148.
  12. G.X. Nong, B.X. Zhang, G.B. Huang, Effect of static magnetic fields on Candida albicans Staphylococcus and E.coli, Chin. J. Phys. Ther., 1 (2001) 39–40.
  13. Z.X. Zhang, Study on screening of high effective oil-degrading bacteria and enhancing its oil removal efficiency by magnetic field, Harbin. Eng. Univ (2014).
  14. F. Zhang, Y. She, Quantitative and qualitative analysis of biosurfactant by oil spreading method, Chem. Eng. J., 112 (2005) 14–15+38.
  15. G.Y. Xu, H.H. Zheng, X.L. Wang, Effects of magnetic filed and magnetic treatment on serum lipids in rats, Lab. Animal. Comp. Med., 12 (1992) 34–35.
  16. H. Yavuz, S.S. Çelebi, Effects of magnetic field on activity of activated sludge in wastewater treatment, Enzyme Microb. Technol., 26(1) (2000) 22–27.
  17. Y.L. Ji, Y.H. Wang, J.S. Sun, Enhancement of biological treatment of wastewater by magnetic field, Bioresour. Technol., 101(22) (2010) 8535–8540.
  18. F. Li, H.C. Wang, W.Y. Guo, Biologic effects of static magnetic field on proliferation and ultra-microstructure of human umbilical vascular endothelial cell, Chin. J. Soil Sci., 14(2) (2006) 140–142.
  19. S. Taoka, R. Padmakumar, C.B. Grissom, R. Banerjee, Magnetic field effects on coenzyme B12-dependent enzymes: Validation of ethanolamine ammonia lyase results and extension to human methylmalonyl CoA mutase, Bioelectromagnetics, 18(7) (1997) 506–513.
  20. B.G. Charles, Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination, Chem. Rev., 95 (1995) 3–24.
  21. R.B. Frankel, R.P. Liburdy, Biological effects of static magnetic fields, Bioelectrochem. Bioenerg., 2(2) (1996) 236–237.
  22. K. Sato, T. Akaike, M. Kohno, Hydroxyl radical production by H2O2 plus Cu, Zn-superoxide dismutase reflects the activity of free copper released from the oxidatively damaged enzyme, J. Biol. Chem., 267(35) (1992) 25371–25377.
  23. H. Aoki, H. Yamazaki, T. Yoshino, T. Akagi, Effects of static magnetic fields on membrane permeability of a cultured cell line, Res. Commun. Chem. Pathol. Pharmacol., 69(1) (1990) 103–106.
  24. T. Ashish, D. Satya, F. Anatoly, Effect of the magnetic field on the hydrodynamic permeability of a membrane, Colloid. J. 74(4) (2012) 515–522.
  25. Y. Zhang, X.A. Zeng, Q.B. Wen, J. Feng, Effect of high intensity pulsed electric field on the membrane permeability and DNA of E coli, High. Volt. Eng., 33(2) (2007) 90–93.
  26. M. Rosenberg, Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity, Appl. Environ. Microbiol., 42(2) (1981) 375–377.
  27. R.A. Al-Tahhan, T.R. Sabdrub, A.A. Bodour, Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates, Appl. Environ. Microbiol., 66(8) (2000) 3262–3268.
  28. H.X. Lan, P. Ma, R. Chen, S.H. Lan, Effect of pH shock on micro-aerobic activated sludge surface characters under weak magnetic field, Chin. J. Environ. Eng., 8(3) (2014) 997–1000.
  29. S. Zinjarde, M. Apte, P. Mohite, Yarrowialipolytica and pollutants: Interactions and applications, Biotechnol. Adv., 32(5) (2014) 920–933.
  30. B.S. Nie, C. Ding, C.X. Li, An experimental study of the influence of magnetic field on the surface tension of mine water, J. Chin. Univ. Min. Technol., 42(1) (2013) 19–23.
  31. B. Deng, X.F. Pang, Static magnetic field influence on properties of water, J. Univ. Electron. Sci. Technol. China, 37(6) (2008) 959–962.
  32. H. Wan, T.S. He, L. Guo, N.P. Song, Effect of magnetic field modification on surface tension of hydrocarbon oil, J. Sichuan. Univ., 43 (2011) 233–235.