Reference

  1. R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U. von Gunter, B. Wehrli, Global water pollution and human health, Annu. Rev. Environ. Res., 35 (2010) 109–136.
  2. J.A. Baeza, D. Gabriel, J. Lafuente, Improving the nitrogen removal efficiency of an A2/O based WWTP by using an on-line knowledge based expert system, Water Res., 36 (2002) 2109–2123.
  3. E. Viopoulou, P. Melidis, A. Aivasidis, An activated sludge treatment plant for integrated removal of carbon, nitrogen and phosphorus, Desalination, 211 (2007) 192–199.
  4. E. Viopoulou, A. Aivasidis, A modified UCT method for biological nutrients removal: Configuration and performance, Chemosphere, 72 (2008) 1062–1068.
  5. A.R.M. Nasab, S.M. Soleymani, M. Nosrati, S.M. Mousavi, Performance evaluation of a modified step-feed anaerobic/anoxic/oxic process for organic and nutrient removal, Chinese J. Chem. Eng., (English ed.), 24 (2016) 394–403.
  6. T.Y. Pai, Y.P. Tsai, Y.J. Chou, H.G. Leu, C.F. Ouyang, Microbial kinetic analyses of three different types of EBNR process, Chemosphere, 55 (2004) 109–118.
  7. K.A. Third, N. Burnett, R. Cord-Ruwisch, Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR, Biotechnol. Bioeng., 83 (2003) 706–720.
  8. D. Kim, K.Y. Kim, H.D. Ryu, K.K. Min, S.I. Lee, Long term operation of pilot-scale biological nutrients removal process in treating municipal wastewater, Bioresour. Technol., 100 (2009) 3180–3184.
  9. Metcalf & Eddy “Wastewater engineering: treatment and reuse.” McGraw-Hill Series in Water Resources and Environmental Engineering, 73 (2003) 50–51.
  10. T. Mino, M.C.M. Van Loosdrecht, J.J. Heijnen, Microbiology and biochemistry of the enhanced biological phosphate removal process, Water Res., 32 (1998) 3193–3207.
  11. J.H. Gau, Y.Z. Peng, S.Y. Wang, Y.N. Zheng, H.J. Huang, Z.W. Wang, Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure, Bioresour. Technol., 100 (2009) 2796–2802.
  12. T. Shoji, H. Satoh, T. Mino, Quantitative estimation of the role of denitrifying accumulating organisms in nutrient removal, Water Sci. Technol., 47 (2003) 23–29.
  13. J. Pietikäinen, M. Pettersson, E. Bååth, Comparison of temperature effects on soil respiration and bacterial and fungal growth rates, Fems Microbiol. Ecol., 52 (2005) 49–58.
  14. K.V. Rajeshwari, M. Balakrishnan, A. Kansal, K. Lata, V.V.N. Kishore, Stateof-the-art of anoxic digestion technology for industrial wastewater treatment, Renew. Sustain. Energy Rev., 4 (2000) 135–156.
  15. N. Sundaresan, L. Philip, Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures, Water Sci. Technol., 58 (2008) 819–830.
  16. L. Sun, L. Wang, X. Yuan, Low temperature influence on package membrane bioreactor (MBR) operation in remote mountain areas, International Conference on Bioinformatics and Biomedical Engineering IEEE., (2009) 1–4.
  17. M. Henze, Wastewater treatment: biological and chemical processes, Progr. Colloid Polym. Sci., 49 (1999) 747–752.
  18. M.K. De Kreuk, M. Pronk, M.C. van Loosdrecht, Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures, Water Res., 39 (2005) 4476–4484.
  19. X. Zhang, Y. Liang, Y. Ma, J. Du, L. Pang, H. Zhang, Ammonia removal and microbial characteristics of partial nitrification in biofilm and activated sludge treating low strength sewage at low temperature, Ecol. Eng., 93 (2016) 104–111.
  20. W. Gujer, M. Henze, T. Mino, M. van Loosdrecht, Activated sludge model no. 3, Water Sci. Technol., 39 (1999) 183–193.
  21. C. GB, Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. China Environmental Science Press, Beijing, China. 2002.
  22. S. Qiao, N. Matsumoto, T. Shinohara, T. Nishiyama, T. Fujii, Z. Bhatti, K. Furukawa, High-rate partial nitrification performance of high ammonium containing wastewater under low temperatures, Bioresour. Technol., 101 (2010) 111.
  23. H. Zhou, X. Li, Z. Chu, J. Zhang, Effect of temperature downshifts on a bench-scale hybrid A/O system: Process performance and microbial community dynamics, Chemosphere, 153 (2016) 500–507.
  24. Y. Wang, Y. Peng, T. Stephenson, Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process, Bioresour. Technol., 100 (2009) 3506–3512.
  25. Y. Chen, B. Li, L. Ye, Y. Peng, The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems, Biochem. Eng. J., 93 (2015) 235–242.
  26. W. Jianlong, S. Hanchang, Q. Yi, Wastewater treatment in a hybrid biological reactor (HBR): effect of organic loading rates, Process Biochem., 36 (2000) 297–303.
  27. D. Kim, T.S. Kim, H.D. Ryu, S.I. Lee, Treatment of low carbon-to-nitrogen wastewater using two-stage sequencing batch reactor with independent nitrification, Process Biochem., 43 (2008) 406–413.
  28. G. Han, X. Sui, Water quality and control parameters analysis on step-feed anoxic/oxic activated sludge process, International Symposium on Water Resource and Environmental Protection, IEEE, 2011, pp. 1537–1540.
  29. K. Hanaki, C. Wantawin, S. Ohgaki, Nitrification at low level of DO with and without organic loading in a suspended growth reactor, Water Res., 24 (1990) 297–302.
  30. S. Wyffels, K. Pynaert, P. Boeckx, W. Verstraete, O. Van Cleemput, Identification and quantification of nitrogen removal in a rotating biological contactor by 15 N tracer techniques, Water Res., 37 (2003) 1252–1259.
  31. L. Lu, D. Xing, N. Ren, Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis zones involved in enhanced H2 production from waste activated sludge, Water Res., 46 (2012) 2425–2434.
  32. J. Luo, H. Liang, L. Yan, J. Ma, Y. Yang, G. Li, Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality, Bioresour. Technol., 148 (2013) 189–195.
  33. S. Park, J. Yu, I. Byun, S. Cho, T. Park, T. Lee, Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions, Bioresour. Technol., 102 (2011) 7265– 7271.
  34. S. Kalyuzhnyi, M. Gladchenko, A. Mulder, B. Versprille, DEAMOX- new biological nitrogen removal process based on anoxic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite, Water Res., 40 (2006) 36–37.