References
- D. Raghunath, Emerging antibiotic resistance in bacteria with
special reference to India, J. Biosci., 33 (2008) 593–603.
- C.A. Peloquin, S.E. Berning, Infection caused by Mycobacterium
tuberculosis, Annals Pharmacotherapy, 28 (1994) 72–84.
- L.R. Hoffman, D.A. D’Argenio, M.J. MacCoss, Z.Y. Zhang, R.A.
Jones, S.I. Miller, Aminoglycoside antibiotics induce bacterial
biofilm formation, Nature, 436 (2005) 1171–1175.
- R.O. Laing, H.V. Hogerzeil, D. Ross-Degnan, Ten recommendations
to improve use of medicines in developing countries,
Health Policy Plann., 16 (2001) 13–20.
- S. Ramaswamy, J.M. Musser, Molecular genetic basis of antimicrobial
agent resistance in Mycobacterium tuberculosis:
1998 update, Tubercle Lung Disease, 79 (1998) 3–29.
- E.A. Campbell, N. Korzheva, A. Mustaev, K. Murakami, S.
Nair, A. Goldfarb, S.A. Darst, Structural mechanism for rifampicin
inhibition of bacterial RNA polymerase, Cell, 104 (2001)
901–912.
- L. Garcia, M. Alonso-Sanz, M.J. Rebollo, J.C. Tercero, F. Chaves,
Mutations in the rpoB gene of rifampin-resistant Mycobacterium
tuberculosis isolates in Spain and their rapid detection
by PCR-enzyme-linked immunosorbent assay, J. Clin. Microbiol.,
39 (2001) 1813–1818.
- G.A. Thomas, D.L. Williams, S.A. Soper, Capillary electrophoresis-based heteroduplex analysis with a universal heteroduplex
generator for detection of point mutations associated with
rifampin resistance in, Clin. Chem., 47 (2001) 1195–1203.
- A.F. Faria, M.V.N. de Souza, R.E. Bruns, M.A.L. de Oliveira,
Simultaneous determination of first-line anti-tuberculosis
drugs by capillary zone electrophoresis using direct UV detection,
Talanta, 82 (2010) 333–339.
- S.A. Benetton, E.R.M. Kedor-Hackmann, M.I.R.M. Santoro, V.M.
Borges, Visible spectrophotometric and first-derivative UV
spectrophotometric determination of rifampicin and isoniazid
in pharmaceutical preparations, Talanta, 47 (1998) 639–643.
- D.H. Vu, R.A. Koster, M.S. Bolhuis, B. Greijdanus, R.V. Altena,
D.H. Nguyen, J.R. Brouwers, D.R. Uges, J.W. Alffenaar, Simultaneous
determination of rifampicin, clarithromycin and their
metabolites in dried blood spots using LC-MS/MS, Talanta,
121 (2014) 9–17.
- F.F. Belal, M.K.S. El-Din, M.I. Eid, R.M. El-Gamal, Micellar
HPLC method using monolithic column for the simultaneous
determination of linezolid and rifampicin in pharmaceuticals
and biological fluids, Anal. Methods-Uk, 5 (2013) 6165–6176.
- P. Pang, Q. Cai, S. Yao, C.A. Grimes, The detection of Mycobacterium
tuberculosis in sputum sample based on a wireless
magnetoelastic-sensing device, Talanta, 76 (2008) 360–364.
- W. Ruengsitagoon, S. Liawruangrath, A. Townshend, Flow
injection chemiluminescence determination of paracetamol,
Talanta, 69 (2006) 976–983.
- H.Y. Ma, X.W. Zheng, Z. Zhang, Flow-injection electrochemiluminescence
detecting rifampicin based on its sensitizing
effect, Chinese J. Chem., 22 (2004) 279–282.
- K. Asadpour-Zeynali, F. Mollarasouli, Novel electrochemical
biosensor based on PVP capped CoFe2O4@CdSe core-shell
nanoparticles modified electrode for ultra-trace level determination
of rifampicin by square wave adsorptive stripping
voltammetry, Biosens. Bioelectron., 92 (2017) 509–516.
- Q. Xia, Y. Huang, X. Lin, S. Zhu, Y. Fu, Highly sensitive D-alanine
electrochemical biosensor based on functionalized multiwalled
carbon nanotubes and D-amino acid oxidase, Biochem.
Eng. J., 113 (2016) 1–6.
- T. Gan, Z. Shi, K. Wang, J. Sun, Z. Lv, Y. Liu, Rifampicin determination
in human serum and urine based on disposable carbon
paste microelectrode modified with hollow manganese
oxide@mesoporous silica oxide core–shell nanohybrid, Can. J.
Chem., 93 (2015) 1061–1068.
- N.S.K. Gowthaman, S. Kesavan, S.A. John, Monitoring isoniazid
level in human fluids in the presence of theophylline using
gold@platinum core@shell nanoparticles modified glassy carbon
electrode, Sensor. Actuat. B-Chem., 230 (2016) 157–166.
- T. Gan, Z. Shi, K. Wang, J. Sun, Z. Lv, Y. Liu, Synthesis and
characterization of mesoporous tin oxide-functionalized
reduced graphene oxide nanoplatelets for ultrasensitive detection
of guaiacol in red wines, Aust. J. Chem., 69 (2016) 220–229.
- J. Ping, Y. Wang, J. Wu, Y. Ying, Development of an electrochemically
reduced graphene oxide modified disposable bismuth
film electrode and its application for stripping analysis
of heavy metals in milk, Food Chem., 151 (2014) 65–71.
- H. Beitollahi, S. Tajik, P. Biparva, Electrochemical determination
of sulfite and phenol using a carbon paste electrode modified
with ionic liquids and graphene nanosheets: Application
to determination of sulfite and phenol in real samples, Measurement,
56 (2014) 170–177.
- L. Zhou, J. Wang, D. Li, Y. Li, An electrochemical aptasensor
based on gold nanoparticles dotted graphene modified glassy
carbon electrode for label-free detection of bisphenol A in milk
samples, Food Chem., 162 (2014) 34–40.
- S.Y. Oh, J.G. Son, P.C. Chiu, Black carbon-mediated reductive
transformation of nitro compounds by hydrogen sulfide, Environ.
Earth Sci., 73 (2015) 1813–1822.
- J. Yu, J. Zou, L. Liu, X. Jiang, F. Jiao, X. Chen, Preparation of
TiO2 based photocatalysts and their photocatalytic degradation
properties for methylene blue, rhodamine B and methyl
orange, Desal. Water Treat., 81 (2017) 282–290.
- B. Yue, L. Yu, F. Jiao, X. Jiang, J. Yu, The fabrication of pentaerythritol
pillared graphene oxide composite and its adsorption
performance towards metal ions from aqueous solutions,
Desal. Water Treat., 102 (2018) 124–133.
- J. Yang, X. Jiang, F. Jiao, J. Yu, The oxygen-rich pentaerythritol
modified multi-walled carbon nanotube as an efficient adsorbent
for aqueous removal of alizarin yellow R and alizarin red
S, Appl. Surf. Sci., 436 (2018) 198–206.
- J.G. Yu, X.H. Zhao, H. Yang, X.H. Chen, Q. Yang, L.Y. Yu, J.H. Jiang,
X.Q. Chen, Aqueous adsorption and removal of organic contaminants
by carbon nanotubes, Sci. Total Environ., 482 (2014) 241–251.
- A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6
(2007) 183–191.
- X. Yan, X. Bo, L. Guo, Electrochemical behaviors and determination
of isoniazid at ordered mesoporous carbon modified
electrode, Sensor. Actuat. B-Chem., 155 (2011) 837–842.
- N. Chen, J. Teng, F. Jiao, X. Jiang, X. Hao, J. Yu, Preparation of
triethanolamine functionalized carbon nanotube for aqueous
removal of Pb(II), Desal. Water Treat., 71 (2017) 191–200
- E. Ruiz-Hitzky, M.M.C. Sobral, A. Gómez-Avilés, C. Nunes, C.
Ruiz-García, P. Ferreira, P. Aranda, Clay-graphene nanoplatelets
functional conducting composites, Adv. Funct. Mater., 26
(2016) 7394–7405.
- R.L.D. Whitby, Chemical control of graphene architecture: tailoring
shape and properties, ACS Nano, 8 (2014) 9733–9754.
- H. Cui, L. Chen, Y. Dong, S. Zhong, D. Guo, H. Zhao, Y. He, H.
Zou, X. Li, Z. Yuan, Molecular recognition based on an electrochemical
sensor of per(6-deoxy-6-thio)-β-cyclodextrin self-assembled
monolayer modified gold electrode, J. Electroanal.
Chem., 742 (2015) 15–22.
- J. Yang, X. Jiang, F. Jiao, J. Yu, X. Chen, Fabrication of diiodocarbene
functionalized oxidized multi-walled carbon nanotube
and its aqueous adsorption performance toward Pb(II), Environ.
Earth Sci., 76 (2017) 677.
- Y.H. Tang, R. Huang, C.B. Liu, S.L. Yang, Z.Z. Lu, S.L. Luo,
Electrochemical detection of 4-nitrophenol based on a glassy
carbon electrode modified with a reduced graphene oxide/Au
nanoparticle composite, Anal. Methods-Uk, 5 (2013) 5508–5514.
- D. Bhattacharjya, I.Y. Jeon, H.Y. Park, T. Panja, J.B. Baek, J.S. Yu,
Graphene nanoplatelets with selectively functionalized edges
as electrode material for electrochemical energy storage, Langmuir,
31 (2015) 5676–5683.
- X.Q. Cui, X. Fang, H. Zhao, Z.X. Li, H.X. Ren, An electrochemical
sensor for dopamine based on polydopamine modified
reduced graphene oxide anchored with tin dioxide and gold
nanoparticles, Anal. Methods-Uk, 9 (2017) 5322–5332.
- X.Y. Ma, M.Y. Chao, Z.X. Wang, Electrochemical detection of
dopamine in the presence of epinephrine, uric acid and ascorbic
acid using a graphene-modified electrode, Anal. Methods-
UK, 4 (2012) 1687–1692.
- Ö.A. Yokuş, F. Kardaş, O. Akyıldırım, T. Eren, N. Atar, M.L.
Yola, Sensitive voltammetric sensor based on polyoxometalate/
reduced graphene oxide nanomaterial: Application to the
simultaneous determination of l-tyrosine and l-tryptophan,
Sensor. Actuat. B-Chem., 233 (2016) 47–54.
- X. Xu, X.Y. Jiang, F.P. Jiao, X.-Q. Chen, J.G. Yu, Tunable assembly
of porous three-dimensional graphene oxide-corn zein composites
with strong mechanical properties for adsorption of
rare earth elements, J. Taiwan Inst. Chem. E., 85 (2018) 106–114.
- C. Li, Z. Wu, H. Yang, L. Deng, X. Chen, Reduced graphene
oxide-cyclodextrin-chitosan electrochemical sensor: effective
and simultaneous determination of o- and p-nitrophenols,
Sensor. Actuat. B-Chem., 251 (2017) 446–454.
- V. Mittal, A.U. Chaudhry, N.B. Matsko, Organic functionalization
of thermally reduced graphene oxide nanoplatelets by
adsorption: structural and morphological characterization,
Philos. Mag., 96 (2016) 2143–2160.
- D. Kumar, K. Singh, V. Verma, H.S. Bhatti, Microwave assisted
synthesis and characterization of graphene nanoplatelets,
Appl. Nanosci., 6 (2015) 97–103.
- S. Rastgar, S. Shahrokhian, Nickel hydroxide nanoparticles-reduced
graphene oxide nanosheets film: Layer-by-layer electrochemical
preparation, characterization and rifampicin sensory
application, Talanta, 119 (2014) 156–163.
- H.L. Tcheumi, I.K. Tonle, E. Ngameni, A. Walcarius, Electrochemical
analysis of methylparathion pesticide by a gemini
surfactant-intercalated clay-modified electrode, Talanta, 81
(2010) 972–979.
- K.J. Chen, C.F. Lee, J. Rick, S.H. Wang, C.C. Liu, B.-J. Hwang,
Fabrication and application of amperometric glucose biosensor
based on a novel PtPd bimetallic nanoparticle decorated
multi-walled carbon nanotube catalyst, Biosens. Bioelectron.,
33 (2012) 75–81.
- J. Teng, X. Zeng, X. Xu, J. Yu, Assembly of a novel porous 3D
graphene oxide-starch architecture by a facile hydrothermal
method and its adsorption properties toward metal ions,
Mater. Lett., 214 (2018) 31–33.
- J. Zou, L. Huang, X. Jiang, F. Jiao, J. Yu, Enhanced chiral electrochemical
recognition of tryptophan enantiomers using a
novel triple-layered GO/BSA/CS modified glassy carbon electrode,
Nanosci. Nanotechnol. Lett., 9 (2017) 1700–1707.
- J. Yang, J. Teng, X. Zhao, X. Jiang, F. Jiao, J. Yu, Synthesis, characterization
and photocatalytic activities of a novel Eu/TiO2/GO
composite, and its application for enhanced photocatalysis of
methylene blue, Nanosci. Nanotechnol. Lett., 9 (2017) 1622–1631.
- J.X. Wang, M.X. Li, Z.J. Shi, N.Q. Li, Z.N. Gu, Direct electrochemistry
of cytochrome c at a glassy carbon electrode modified with
single-wall carbon nanotubes, Anal. Chem., 74 (2002) 1993–1997.
- E. Hammam, A.M. Beltagi, M.M. Ghoneim, Voltammetric
assay of rifampicin and isoniazid drugs, separately and combined
in bulk, pharmaceutical formulations and human serum
at a carbon paste electrode, Microchem. J., 77 (2004) 53–62.