References

  1. D. Raghunath, Emerging antibiotic resistance in bacteria with special reference to India, J. Biosci., 33 (2008) 593–603.
  2. C.A. Peloquin, S.E. Berning, Infection caused by Mycobacterium tuberculosis, Annals Pharmacotherapy, 28 (1994) 72–84.
  3. L.R. Hoffman, D.A. D’Argenio, M.J. MacCoss, Z.Y. Zhang, R.A. Jones, S.I. Miller, Aminoglycoside antibiotics induce bacterial biofilm formation, Nature, 436 (2005) 1171–1175.
  4. R.O. Laing, H.V. Hogerzeil, D. Ross-Degnan, Ten recommendations to improve use of medicines in developing countries, Health Policy Plann., 16 (2001) 13–20.
  5. S. Ramaswamy, J.M. Musser, Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update, Tubercle Lung Disease, 79 (1998) 3–29.
  6. E.A. Campbell, N. Korzheva, A. Mustaev, K. Murakami, S. Nair, A. Goldfarb, S.A. Darst, Structural mechanism for rifampicin inhibition of bacterial RNA polymerase, Cell, 104 (2001) 901–912.
  7. L. Garcia, M. Alonso-Sanz, M.J. Rebollo, J.C. Tercero, F. Chaves, Mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis isolates in Spain and their rapid detection by PCR-enzyme-linked immunosorbent assay, J. Clin. Microbiol., 39 (2001) 1813–1818.
  8. G.A. Thomas, D.L. Williams, S.A. Soper, Capillary electrophoresis-based heteroduplex analysis with a universal heteroduplex generator for detection of point mutations associated with rifampin resistance in, Clin. Chem., 47 (2001) 1195–1203.
  9. A.F. Faria, M.V.N. de Souza, R.E. Bruns, M.A.L. de Oliveira, Simultaneous determination of first-line anti-tuberculosis drugs by capillary zone electrophoresis using direct UV detection, Talanta, 82 (2010) 333–339.
  10. S.A. Benetton, E.R.M. Kedor-Hackmann, M.I.R.M. Santoro, V.M. Borges, Visible spectrophotometric and first-derivative UV spectrophotometric determination of rifampicin and isoniazid in pharmaceutical preparations, Talanta, 47 (1998) 639–643.
  11. D.H. Vu, R.A. Koster, M.S. Bolhuis, B. Greijdanus, R.V. Altena, D.H. Nguyen, J.R. Brouwers, D.R. Uges, J.W. Alffenaar, Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS, Talanta, 121 (2014) 9–17.
  12. F.F. Belal, M.K.S. El-Din, M.I. Eid, R.M. El-Gamal, Micellar HPLC method using monolithic column for the simultaneous determination of linezolid and rifampicin in pharmaceuticals and biological fluids, Anal. Methods-Uk, 5 (2013) 6165–6176.
  13. P. Pang, Q. Cai, S. Yao, C.A. Grimes, The detection of Mycobacterium tuberculosis in sputum sample based on a wireless magnetoelastic-sensing device, Talanta, 76 (2008) 360–364.
  14. W. Ruengsitagoon, S. Liawruangrath, A. Townshend, Flow injection chemiluminescence determination of paracetamol, Talanta, 69 (2006) 976–983.
  15. H.Y. Ma, X.W. Zheng, Z. Zhang, Flow-injection electrochemiluminescence detecting rifampicin based on its sensitizing effect, Chinese J. Chem., 22 (2004) 279–282.
  16. K. Asadpour-Zeynali, F. Mollarasouli, Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry, Biosens. Bioelectron., 92 (2017) 509–516.
  17. Q. Xia, Y. Huang, X. Lin, S. Zhu, Y. Fu, Highly sensitive D-alanine electrochemical biosensor based on functionalized multiwalled carbon nanotubes and D-amino acid oxidase, Biochem. Eng. J., 113 (2016) 1–6.
  18. T. Gan, Z. Shi, K. Wang, J. Sun, Z. Lv, Y. Liu, Rifampicin determination in human serum and urine based on disposable carbon paste microelectrode modified with hollow manganese oxide@mesoporous silica oxide core–shell nanohybrid, Can. J. Chem., 93 (2015) 1061–1068.
  19. N.S.K. Gowthaman, S. Kesavan, S.A. John, Monitoring isoniazid level in human fluids in the presence of theophylline using gold@platinum core@shell nanoparticles modified glassy carbon electrode, Sensor. Actuat. B-Chem., 230 (2016) 157–166.
  20. T. Gan, Z. Shi, K. Wang, J. Sun, Z. Lv, Y. Liu, Synthesis and characterization of mesoporous tin oxide-functionalized reduced graphene oxide nanoplatelets for ultrasensitive detection of guaiacol in red wines, Aust. J. Chem., 69 (2016) 220–229.
  21. J. Ping, Y. Wang, J. Wu, Y. Ying, Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk, Food Chem., 151 (2014) 65–71.
  22. H. Beitollahi, S. Tajik, P. Biparva, Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: Application to determination of sulfite and phenol in real samples, Measurement, 56 (2014) 170–177.
  23. L. Zhou, J. Wang, D. Li, Y. Li, An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples, Food Chem., 162 (2014) 34–40.
  24. S.Y. Oh, J.G. Son, P.C. Chiu, Black carbon-mediated reductive transformation of nitro compounds by hydrogen sulfide, Environ. Earth Sci., 73 (2015) 1813–1822.
  25. J. Yu, J. Zou, L. Liu, X. Jiang, F. Jiao, X. Chen, Preparation of TiO2 based photocatalysts and their photocatalytic degradation properties for methylene blue, rhodamine B and methyl orange, Desal. Water Treat., 81 (2017) 282–290.
  26. B. Yue, L. Yu, F. Jiao, X. Jiang, J. Yu, The fabrication of pentaerythritol pillared graphene oxide composite and its adsorption performance towards metal ions from aqueous solutions, Desal. Water Treat., 102 (2018) 124–133.
  27. J. Yang, X. Jiang, F. Jiao, J. Yu, The oxygen-rich pentaerythritol modified multi-walled carbon nanotube as an efficient adsorbent for aqueous removal of alizarin yellow R and alizarin red S, Appl. Surf. Sci., 436 (2018) 198–206.
  28. J.G. Yu, X.H. Zhao, H. Yang, X.H. Chen, Q. Yang, L.Y. Yu, J.H. Jiang, X.Q. Chen, Aqueous adsorption and removal of organic contaminants by carbon nanotubes, Sci. Total Environ., 482 (2014) 241–251.
  29. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183–191.
  30. X. Yan, X. Bo, L. Guo, Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode, Sensor. Actuat. B-Chem., 155 (2011) 837–842.
  31. N. Chen, J. Teng, F. Jiao, X. Jiang, X. Hao, J. Yu, Preparation of triethanolamine functionalized carbon nanotube for aqueous removal of Pb(II), Desal. Water Treat., 71 (2017) 191–200
  32. E. Ruiz-Hitzky, M.M.C. Sobral, A. Gómez-Avilés, C. Nunes, C. Ruiz-García, P. Ferreira, P. Aranda, Clay-graphene nanoplatelets functional conducting composites, Adv. Funct. Mater., 26 (2016) 7394–7405.
  33. R.L.D. Whitby, Chemical control of graphene architecture: tailoring shape and properties, ACS Nano, 8 (2014) 9733–9754.
  34. H. Cui, L. Chen, Y. Dong, S. Zhong, D. Guo, H. Zhao, Y. He, H. Zou, X. Li, Z. Yuan, Molecular recognition based on an electrochemical sensor of per(6-deoxy-6-thio)-β-cyclodextrin self-assembled monolayer modified gold electrode, J. Electroanal. Chem., 742 (2015) 15–22.
  35. J. Yang, X. Jiang, F. Jiao, J. Yu, X. Chen, Fabrication of diiodocarbene functionalized oxidized multi-walled carbon nanotube and its aqueous adsorption performance toward Pb(II), Environ. Earth Sci., 76 (2017) 677.
  36. Y.H. Tang, R. Huang, C.B. Liu, S.L. Yang, Z.Z. Lu, S.L. Luo, Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite, Anal. Methods-Uk, 5 (2013) 5508–5514.
  37. D. Bhattacharjya, I.Y. Jeon, H.Y. Park, T. Panja, J.B. Baek, J.S. Yu, Graphene nanoplatelets with selectively functionalized edges as electrode material for electrochemical energy storage, Langmuir, 31 (2015) 5676–5683.
  38. X.Q. Cui, X. Fang, H. Zhao, Z.X. Li, H.X. Ren, An electrochemical sensor for dopamine based on polydopamine modified reduced graphene oxide anchored with tin dioxide and gold nanoparticles, Anal. Methods-Uk, 9 (2017) 5322–5332.
  39. X.Y. Ma, M.Y. Chao, Z.X. Wang, Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode, Anal. Methods- UK, 4 (2012) 1687–1692.
  40. Ö.A. Yokuş, F. Kardaş, O. Akyıldırım, T. Eren, N. Atar, M.L. Yola, Sensitive voltammetric sensor based on polyoxometalate/ reduced graphene oxide nanomaterial: Application to the simultaneous determination of l-tyrosine and l-tryptophan, Sensor. Actuat. B-Chem., 233 (2016) 47–54.
  41. X. Xu, X.Y. Jiang, F.P. Jiao, X.-Q. Chen, J.G. Yu, Tunable assembly of porous three-dimensional graphene oxide-corn zein composites with strong mechanical properties for adsorption of rare earth elements, J. Taiwan Inst. Chem. E., 85 (2018) 106–114.
  42. C. Li, Z. Wu, H. Yang, L. Deng, X. Chen, Reduced graphene oxide-cyclodextrin-chitosan electrochemical sensor: effective and simultaneous determination of o- and p-nitrophenols, Sensor. Actuat. B-Chem., 251 (2017) 446–454.
  43. V. Mittal, A.U. Chaudhry, N.B. Matsko, Organic functionalization of thermally reduced graphene oxide nanoplatelets by adsorption: structural and morphological characterization, Philos. Mag., 96 (2016) 2143–2160.
  44. D. Kumar, K. Singh, V. Verma, H.S. Bhatti, Microwave assisted synthesis and characterization of graphene nanoplatelets, Appl. Nanosci., 6 (2015) 97–103.
  45. S. Rastgar, S. Shahrokhian, Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application, Talanta, 119 (2014) 156–163.
  46. H.L. Tcheumi, I.K. Tonle, E. Ngameni, A. Walcarius, Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode, Talanta, 81 (2010) 972–979.
  47. K.J. Chen, C.F. Lee, J. Rick, S.H. Wang, C.C. Liu, B.-J. Hwang, Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst, Biosens. Bioelectron., 33 (2012) 75–81.
  48. J. Teng, X. Zeng, X. Xu, J. Yu, Assembly of a novel porous 3D graphene oxide-starch architecture by a facile hydrothermal method and its adsorption properties toward metal ions, Mater. Lett., 214 (2018) 31–33.
  49. J. Zou, L. Huang, X. Jiang, F. Jiao, J. Yu, Enhanced chiral electrochemical recognition of tryptophan enantiomers using a novel triple-layered GO/BSA/CS modified glassy carbon electrode, Nanosci. Nanotechnol. Lett., 9 (2017) 1700–1707.
  50. J. Yang, J. Teng, X. Zhao, X. Jiang, F. Jiao, J. Yu, Synthesis, characterization and photocatalytic activities of a novel Eu/TiO2/GO composite, and its application for enhanced photocatalysis of methylene blue, Nanosci. Nanotechnol. Lett., 9 (2017) 1622–1631.
  51. J.X. Wang, M.X. Li, Z.J. Shi, N.Q. Li, Z.N. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Anal. Chem., 74 (2002) 1993–1997.
  52. E. Hammam, A.M. Beltagi, M.M. Ghoneim, Voltammetric assay of rifampicin and isoniazid drugs, separately and combined in bulk, pharmaceutical formulations and human serum at a carbon paste electrode, Microchem. J., 77 (2004) 53–62.