References

  1. F. Al Housari, D. Vione, S. Chiron, S. Barbati, Reactive photo induced species in estuarine waters, Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes, Photochem. Photobiol. Sci., 9 (2010) 78–86.
  2. L. Carlos, D.O. Mártire, M.C. Gonzalez, J. Gomis, A. Bernabeu, A.M. Amat, A. Arques, Photochemical fate of a mixture of emerging pollutants in the presence of humic substances, Water Res., 46 (2012) 4732–4740.
  3. W. Yang, S.B. Abdelmelek, Zh. Zheng, T. An, D. Zhang, W. Song, Photochemical transformation of terbutaline (pharmaceutical) in simulated natural waters: Degradation kinetics and mechanisms, Water Res., 47 (2013) 6558–6565.
  4. S. Halladja, A. Ter Halle, J.P. Aguer, A. Boulkamh, C. Richard, Inhibition of humic substances mediated photo oxygenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states, Environ. Sci. Technol., 41 (2007) 6066–6073.
  5. H.M. Xu, W.J. Cooper, J.Y. Jung, W. Song, Photo sensitized degradation of amoxicillin in natural organic matter isolate solutions, Water Res., 45 (2011) 632–638.
  6. X.Z. Luo, Z. Zheng, J. Greaves, W.J. Cooper, W. Song, Trimethoprim: Kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment, Water Res., 46(4) (2012) 1327–1336.
  7. T. Nagai, A. Imai, Voltammetric determination of dissolved iron and its speciation in freshwater, Limnology, 5(2) (2004) 87–94.
  8. B.M. Voelker, F.M.M. Morel, B. Sulzberger, Iron redox cycling in surface waters: effects of humic substances and light, Environ. Sci. Technol., 31 (1997) 1004–1011.
  9. X.X. Ou, S. Chen, X. Quan, Y. Zhao, Photochemical activity and characterization of the complex of humic acids with iron (III), J. Geochem. Explor., 102 (2009) 49–55.
  10. X.X. Ou, S. Chen, X. Quan, H.M. Zhao, Photo inductive activity of humic acid fractions with the presence of Fe(III): The role of aromaticity and oxygen groups involved in fractions, Chemosphere, 72 (2008) 925–931.
  11. C. Zeng, Y.F. Ji, L. Zhou, Y. Zhang, X. Yang, The role of dissolved organic matters in the aquatic photodegradation of atenolol, J. Hazard. Mater., 239–240 (2012) 340–347.
  12. M.J. Zhan, X. Yang, Q.N. Xian, L. Kong, Photo sensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances, Chemosphere, 63 (2006) 378–386.
  13. M. Fukushima, K. Tatsumi, Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron(III), humic acid, and hydrogen peroxide, Environ. Sci. Technol., 35(9) (2001) 1771–1778.
  14. L.O. Conte, P. Querini, E.D. Albizzati, O.M. Alfano, Photonic and quantum efficiencies for the homogeneous photo-Fenton degradation of herbicide 2,4-D using different iron complexes, J. Chem. Technol. Biotechnol., 89 (2014) 1967–1974.
  15. J. Bolobajev, M. Trapido, A. Goi, Effect of iron ion on doxycycline photo catalytic and Fenton-based autocatatalytic decomposition, Chemosphere, 153 (2016) 220–226.
  16. S.D. Marathe, V.S. Shrivastava, Removal of textile dye reactive blue 59 by using Nb2O5 as a photo catalyst, Desal. Water Treat., 57 (2016) 4652–4658.
  17. Z. Ayazi, Z.M. Khoshhesab, S. Norouzi, Modeling and optimizing of adsorption removal of Reactive Blue 19 on the magnetite/graphene oxide nano composite via response surface methodology, Desal. Water Treat., 57 (2016) 25301–25316.
  18. R.S. Swift, Organic matter characterization. In: Methods of Soil Analysis. Part 3. Chemical methods. Sparks, D.L. (Ed), Soil Science Society of America. Madison, WI, (1996) 1018–1020.
  19. K.C. Christoforidis, M. Louloudi, Y. Deligiannakis, Effect of humic acid on chemical oxidation of organic pollutants by iron(II) and H2O2: A dual mechanism, J. Environ. Chem. Eng., 3(4) (2015) 2991–2996.
  20. J.J. Pignatello, E. Oliveros, A. Mackay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 36(1) (2006) 1–84.
  21. C. Bouasla, M.E. Samar, F. Ismail, Degradation of methyl violet 6B dye by the Fenton process, Desalination, 254 (2010) 35–41.
  22. J. Xu, Z.N. Hao, C.S. Guo, Y. Zhang, Y. He, W. Meng, Photodegradation of sulfapyridine under simulated sunlight irradiation: Kinetics, mechanism and toxicity evolvement, Chemosphere, 99 (2013) 186–191.
  23. A. Zhang, Y.M. Li, Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix, Sci. Total Environ., 493 (2014) 307–323.
  24. S. Verma, M. Sillanp, Degradation of anatoxin-a by UV-C LED and UV-C LED/H2O2 advanced oxidation processes, Chem. Eng. J., 274 (2015) 274–281.
  25. K. Fang, D.X. Yuan, L. Zhang, L.F. Feng, Effect of environmental factors on the complexation of iron and humic acid, J. Environ. Sci., 27 (2015) 188–196.
  26. B.C. Faust, R.G. Zepp, Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters, Environ. Sci. Technol., 27 (1993) 2517–2522.
  27. T.W. Ng, A.T. Chow, P.K. Wong, Dual roles of dissolved organic matter in photo-irradiated Fe(III)-contained waters, J. Photo chem. Photo bio. A: Chem., 290 (2014) 116–124.
  28. A.B. Prevot, F. Baino, D. Fabbri, F. Franzoso, G. Magnacca, R. Nisticò, A. Arques, Urban biowaste-derived sensitizing materials for caffeine photodegradation, Environ. Sci. Pollut. Res., 24 (2017) 12599–12607.
  29. W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot, Assessment of the Fe(III)-EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A, Environ. Sci. Technol., 47 (2013) 1952–1959.
  30. W. Tian, Z. Yang, X. Zhang, W. Ma, J. Jiang, Redox properties of humic substances under different environmental conditions, Environ. Sci. Pollut. Res. (2017). https://doi.org/10.1007/ s11356-017-9506-3.
  31. P.G. Negueroles, E. Bou-Belda, L. Santos-Juanes, A.M. Amat, A. Arques, R.F. Vercher, P. Monllor, R. Vicente, Treatment and reuse of textile waste waters by mild solar photo-Fenton in the presence of humic-like substances, Environ. Sci. Pollut. Res., 24 (2017) 12664–12672.
  32. L.K. Ge, J.W. Chen, X.L. Qiao, J. Lin, X.Y. Cai, Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: mechanism and kinetics, Environ. Sci. Technol., 43 (2009) 3101–3107.
  33. J.M. Monteagudo, A. Durán, I. San Martín, S. García, Ultrasound-assisted homogeneous photo catalytic degradation of reactive blue 4 in aqueous solution, Appl. Catal. B: Environ., 152 (2014) 59–67.
  34. C.C. Ryan, D.T. Tan, W.A. Arnold, Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent, Water Res., 45(3) (2011) 1280–1286.
  35. L.C. Bodhipaksha, C.M. Sharpless, Y.P. Chin, A.A. Mackay, Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin, Water Res., 110 (2017) 170–179.