References

  1. M.C. Samolada, A.A. Zabaniotou, Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece, Waste Manage., 34 (2014) 411–420.
  2. C.S. Xu, A.H. Zhong, X.L. Li, C.M. Wang, A. Sahu, H.M. Xu, T. Lattimore, K.Q. Zhou, Y.Q. Huang, Laminar burning characteristics of upgraded biomass pyrolysis fuel derived from rice husk at elevated pressures and temperatures, Fuel, 210 (2017) 249–261.
  3. M.H. Lopes, P. Abelha , N. Lapa, J.S. Oliveira, I. Cabrita, I. Gulyurtlu, The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed, Waste Manage., 23 (2003) 859–870.
  4. E.M.M. Ewais, R.M. Elsaadany, A.A. Ahemd, N.H. Shalaby, B.E.H. Al-Anadouli, Insulating refractory bricks from water treatment sludge and rice husk ash, Refract, Ind. Ceram., 4 (2017) 1–9.
  5. M. Otero, L.F. Calvo, M.V. Gil, A.I. Garcia, A. Moran, Co-combustion of different sewage sludge and coal: a nonisothermal thermogravimetric kinetic analysis, Bioresour. Technol., 99 (2008) 6311–6319.
  6. H. Siyuan, J.J. Sheng, An innovative method to build a comprehensive kinetic model for air injection using TGA/DSC experiments, Fuel, 210 (2017) 98–106.
  7. Solid Biomass Fuel Industrial Analysis Method, GB/T 28731- 2010, PR China.
  8. Industrial Analysis of Coal, GB/T 212-2008, PR China.
  9. Oxygen Bomb Combustion Method, GB/T 213-2008, PR China.
  10. H. Yilmaz, O. Cam, I. Yilmaz, Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames, Energy, 135 (2017) 585–597.
  11. R. Bilbao, J.F. Mastral, M.E. Aldea, J. Ceamanos, M. Betran, J.A. Lana, Experimental and theoretical study of the ignition and smoldering of wood including convective effects, Combust. Flame, 126 (2001) 1363–1372.
  12. H. Zhang, L.L. Zhang, Y.J. Han, Y. Yu, M.A. Xu, X.P. Zhang, L. Huang, S.J. Dong, RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells, Biosens. Bioelectron., 97 (2017) 34–40.
  13. L. Yanfen, X. Ma, Thermogravimetric analysis of the co-combustion of coal and paper mill sludge, Appl. Energy, 87 (2010) 3526–3532.
  14. B.B. Uzun, E. Yaman, Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis, J. Energy Inst., 90 (2016) 825–837.
  15. T. Damartzis, D. Vamvuka, S. Sfakiltakis, A. Zabaniotou, Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA), Bioresour. Technol., 102 (2011) 6230–6238.
  16. K.M. Lu, W.J. Lee, W.H. Chen, T.C. Lin, Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends, Appl. Energy, 105 (2013) 57–65.
  17. H.H. Sait, A. Hussain, A.A. Salema, F.N. Ani, Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis, Bioresour. Technol., 118 (2012) 382–389.
  18. S.V. Vassilev, D. Baxter, C.G. Vassileva, An overview of the behaviour of biomass during combustion: part I. Phase-mineral transformations of organic and inorganic matter, Fuel, 112 (2013) 391–449.
  19. A.B. Folgueras, R.M. Diaz, J. Xiberta, I. Prieto, Thermogravimetric analysis of the co-combustion of coal and sewage sludge, Fuel, 82 (2003) 2051–2055.
  20. S.J. Li, H.L. Wang, J.M. Yan, Q. Jiang, Oleylamine-stabilized Cu0.9Ni0.1 nanoparticles as efficient catalyst for ammonia borane dehydrogenation, Int. J. Hydrogen Energy, 42 (2017) 25251–25257.