References

  1. S. Jevrejeva, J.C. Moore, A. Grinsted, Sea level projections to AD2500 with a new generation of climate change scenarios, Global Planet. Change, 80–81 (2012) 14–20.
  2. D.P. Chambers, C.A. Mehlhaff, T.J. Urban, R.S. Nerem, Analysis of interannual and low-frequency variability in global mean sea level from altimetry and tide gauges, Phys. Chem. Earth, 27 (2002) 1407–1411.
  3. J. Pycroft, L. Vergano, C. Hope, The economic impact of extreme sea-level rise: ice sheet vulnerability and the social cost of carbon dioxide, Global Environ. Change, 24 (2014) 99–107.
  4. C.L. Lopes, P.A. Silva, J.M. Dias, A. Rocha, A. Picado, S. Plecha, A.B. Fortunato, Local sea level change scenarios for the end of the 21st century and potential physical impacts in the lower Ria de Aveiro (Portugal), Cont. Shelf Res., 31 (2011) 1515–1526.
  5. A.B.A. Slangen, C.A. Katsman, R.S.W. van de Wal, L.L.A. Vermeersen, R.E.M. Riva, Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios, Clim. Dyn., 38 (2012) 1191–1209.
  6. R.A. Bindschadler, S. Nowicki, A. Abe-Ouchi, A. Aschwanden, H. Choi, J. Fastook, G. Granzow, R. Greve, G. Gutowski, U. Herzfeld, C. Jackson, J. Johnson, C. Khroulev, A. Levermann, W.H. Lipscomb, M.A. Martin, M. Morlighem, B.R. Parizek, D. Pollard, S.F. Price, D.D. Ren, F. Saito, T. Sato, H. Seddik, H. Seroussi, K. Takahashi, R. Walker, W.L. Wang, Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project), J. Glaciol., 59 (2013) 195–224.
  7. J.A. Church, D. Monselesan, J.M. Gregory, B. Marzeion, Evaluating the ability of process based models to project sealevel change, Environ. Res. Lett., 8 (2013) 014051.
  8. D. Felsenstein, M. Lichter, Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding, Nat. Hazard., 71 (2014) 463–491.
  9. S. Rahmstorf, A semi-empirical approach to projecting future sea-level rise, Science, 315 (2007) 368–370.
  10. R.S. Nerem, B.D. Beckley, J.T. Fasullo, B.D. Hamlington, D. Masters, G.T. Mitchum, Climate-change-driven accelerated sea-level rise detected in the altimeter era, Proc. Natl. Acad. Sci. USA, 115 (2018) 2022–2025.
  11. Q.Y. Liu, M. Feng, D.X. Wang, ENSO-induced interannual variability in the southeastern South China Sea, J. Oceanogr., 67 (2011) 127–133.
  12. N.E. Huang, Z. Shen, S.R. Long, M.L.C. Wu, H.H. Shih, Q.N. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Roy. Soc. A, 454 (1998) 903–995.
  13. L.C. Wu, C.C. Kao, T.W. Hsu, K.C. Jao, Y.F. Wang, Ensemble empirical mode decomposition on storm surge separation from sea level data, Coast Eng. J., 53 (2011) 223–243.
  14. Y.C. Cheng, T. Ezer, L.P. Atkinson, Q. Xu, Analysis of tidal amplitude changes using the EMD method, Cont. Shelf Res., 148 (2017) 44–52.
  15. Y.J. Xue, J.X. Cao, R.F. Tian, A comparative study on hydrocarbon detection using three EMD-based time-frequency analysis methods, J. Appl. Geophys., 89 (2013) 108–115.
  16. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Data Anal., 1 (2009) 1–41.
  17. R.H. Jones, Maximum likelihood fitting of ARMA models to time series with missing observations, Technometrics, 22 (1980) 389–395.
  18. V.V. Srinivas, B. Basu, D. Nagesh Kumar, S.K. Jain, Multi-site downscaling of maximum and minimum daily temperature using support vector machine, Int. J. Climatol., 34 (2014) 1538–1560.
  19. F.-M. Tseng, H.-C. Yu, G.-H. Tzeng, Applied hybrid grey model to forecast seasonal time series, Technol. Forecasting Social Change, 67 (2001) 291–302.
  20. A. Filippo, A.R. Torres, B. Kjerfve, A. Monat, Application of artificial neural network (ANN) to improve forecasting of sea level, Ocean Coastal Manage., 55 (2012) 101–110.
  21. H.C. Yuan, M.X. Tan, W.J. Wang, Selection of methods for predicting tidal levels with a typhoon surge effect, J. Coastal Res., 73 (2015) 337–341.
  22. S. Hallegatte, C. Green, R.J. Nicholls, J. Corfee-Morlot, Future flood losses in major coastal cities, Nat. Clim. Change, 3 (2013) 802–806.
  23. R.J. Nicholls, A. Cazenave, Sea-level rise and its impact on coastal zones, Science, 328 (2010) 1517–1520.
  24. L. He, G.S. Li, K. Li, Y.Q. Shu, Estimation of regional sea level change in the Pearl River Delta from tide gauge and satellite altimetry data, Estuarine Coastal Shelf Sci., 141 (2014) 69–77.
  25. B.Q. Huang, A. Kunoth, An optimization based empirical mode decomposition scheme, J. Comput. Appl. Math., 240 (2013) 174–183.
  26. Z.H. Wu, N.E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method, Proc. Roy. Soc. A, 460 (2004) 1597–1611.
  27. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986) 533–536.
  28. J.A. Church, N.J. White, R. Coleman, K. Lambeck, J.X. Mitrovica, Estimates of the regional distribution of sea level rise over the 1950-2000 period, J. Clim., 17 (2004) 2609–2625.
  29. T. Lee, T.B.M.J. Ouarda, An EMD and PCA hybrid approach for separating noise from signal, and signal in climate change detection, Int. J. Climatol., 32 (2012) 624–634.
  30. T. Chen, Q. Yang, X. Xu, The characteristics of sea level change along the coast of Guangdong Province, Tropic Oceanol., 16 (1997) 95–100.
  31. J.A. Church, N.J. White, A 20th century acceleration in global sea-level rise, Geophys. Res. Lett., 33 (2006) 313–324.
  32. G.I. Roden, Low-frequency sea level oscillations along the Pacific Coast of North America, J. Geophys. Res., 71 (1966) 4755–4776.
  33. R.R. Torres, M.N. Tsimplis, Seasonal sea level cycle in the Caribbean Sea, J. Geophys. Res., 117 (2012) C07011.
  34. F.M. Calafat, D.P. Chambers, M.N. Tsimplis, Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: the role of atmospheric forcing, J. Geophys. Res., 118 (2013) 1287–1301.
  35. M. Marcos, A. Amores, Quantifying anthropogenic and natural contributions to thermosteric sea level rise, Geophys. Res. Lett., 41 (2014) 2502–2507.
  36. F.J. Wu, L.S. Qu, An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery, J. Sound Vib., 314 (2008) 586–602.
  37. G. Brasseur, P.C. Simon, Stratospheric chemical and thermal response to long-term variability in solar UV irradiance, J. Geophys. Res., 86 (1981) 7343–7362.
  38. W. Zheng, Distribution of annual rates of sea level and variation of long-period constituents in China, Mar. Sci. Bull., 18 (1999) 1–10.
  39. B. Pradhan, S. Lee, Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia, Landslides, 7 (2010) 13–30.
  40. B.N. Asmar, P. Ergenzinger, Long-term prediction of the water level and salinity in the Dead Sea, Hydrol. Process., 16 (2002) 2819–2831.
  41. Y.C. Cheng, O.B. Andersen, P. Knudsen, Integrating non-tidal sea level data from altimetry and tide gauges for coastal sea level prediction, Adv. Space Res., 50 (2012) 1099–1106.
  42. T.L. Lee, Back-propagation neural network for long-term tidal predictions, Ocean Eng., 31 (2004) 225–238.