References
- S. Jevrejeva, J.C. Moore, A. Grinsted, Sea level projections to
AD2500 with a new generation of climate change scenarios,
Global Planet. Change, 80–81 (2012) 14–20.
- D.P. Chambers, C.A. Mehlhaff, T.J. Urban, R.S. Nerem, Analysis
of interannual and low-frequency variability in global mean
sea level from altimetry and tide gauges, Phys. Chem. Earth, 27
(2002) 1407–1411.
- J. Pycroft, L. Vergano, C. Hope, The economic impact of
extreme sea-level rise: ice sheet vulnerability and the social cost
of carbon dioxide, Global Environ. Change, 24 (2014) 99–107.
- C.L. Lopes, P.A. Silva, J.M. Dias, A. Rocha, A. Picado, S. Plecha,
A.B. Fortunato, Local sea level change scenarios for the end of
the 21st century and potential physical impacts in the lower Ria
de Aveiro (Portugal), Cont. Shelf Res., 31 (2011) 1515–1526.
- A.B.A. Slangen, C.A. Katsman, R.S.W. van de Wal, L.L.A.
Vermeersen, R.E.M. Riva, Towards regional projections of
twenty-first century sea-level change based on IPCC SRES
scenarios, Clim. Dyn., 38 (2012) 1191–1209.
- R.A. Bindschadler, S. Nowicki, A. Abe-Ouchi, A. Aschwanden,
H. Choi, J. Fastook, G. Granzow, R. Greve, G. Gutowski, U.
Herzfeld, C. Jackson, J. Johnson, C. Khroulev, A. Levermann,
W.H. Lipscomb, M.A. Martin, M. Morlighem, B.R. Parizek,
D. Pollard, S.F. Price, D.D. Ren, F. Saito, T. Sato, H. Seddik,
H. Seroussi, K. Takahashi, R. Walker, W.L. Wang, Ice-sheet
model sensitivities to environmental forcing and their use in
projecting future sea level (the SeaRISE project), J. Glaciol., 59
(2013) 195–224.
- J.A. Church, D. Monselesan, J.M. Gregory, B. Marzeion,
Evaluating the ability of process based models to project sealevel
change, Environ. Res. Lett., 8 (2013) 014051.
- D. Felsenstein, M. Lichter, Social and economic vulnerability of
coastal communities to sea-level rise and extreme flooding, Nat.
Hazard., 71 (2014) 463–491.
- S. Rahmstorf, A semi-empirical approach to projecting future
sea-level rise, Science, 315 (2007) 368–370.
- R.S. Nerem, B.D. Beckley, J.T. Fasullo, B.D. Hamlington, D.
Masters, G.T. Mitchum, Climate-change-driven accelerated
sea-level rise detected in the altimeter era, Proc. Natl. Acad. Sci.
USA, 115 (2018) 2022–2025.
- Q.Y. Liu, M. Feng, D.X. Wang, ENSO-induced interannual
variability in the southeastern South China Sea, J. Oceanogr., 67
(2011) 127–133.
- N.E. Huang, Z. Shen, S.R. Long, M.L.C. Wu, H.H. Shih, Q.N.
Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode
decomposition and the Hilbert spectrum for nonlinear and
non-stationary time series analysis, Proc. Roy. Soc. A, 454 (1998)
903–995.
- L.C. Wu, C.C. Kao, T.W. Hsu, K.C. Jao, Y.F. Wang, Ensemble
empirical mode decomposition on storm surge separation from
sea level data, Coast Eng. J., 53 (2011) 223–243.
- Y.C. Cheng, T. Ezer, L.P. Atkinson, Q. Xu, Analysis of tidal
amplitude changes using the EMD method, Cont. Shelf Res.,
148 (2017) 44–52.
- Y.J. Xue, J.X. Cao, R.F. Tian, A comparative study on
hydrocarbon detection using three EMD-based time-frequency
analysis methods, J. Appl. Geophys., 89 (2013) 108–115.
- Z. Wu, N.E. Huang, Ensemble empirical mode decomposition:
a noise-assisted data analysis method, Adv. Data Anal., 1 (2009)
1–41.
- R.H. Jones, Maximum likelihood fitting of ARMA models to
time series with missing observations, Technometrics, 22 (1980)
389–395.
- V.V. Srinivas, B. Basu, D. Nagesh Kumar, S.K. Jain, Multi-site
downscaling of maximum and minimum daily temperature
using support vector machine, Int. J. Climatol., 34 (2014)
1538–1560.
- F.-M. Tseng, H.-C. Yu, G.-H. Tzeng, Applied hybrid grey model
to forecast seasonal time series, Technol. Forecasting Social
Change, 67 (2001) 291–302.
- A. Filippo, A.R. Torres, B. Kjerfve, A. Monat, Application of
artificial neural network (ANN) to improve forecasting of sea
level, Ocean Coastal Manage., 55 (2012) 101–110.
- H.C. Yuan, M.X. Tan, W.J. Wang, Selection of methods for
predicting tidal levels with a typhoon surge effect, J. Coastal
Res., 73 (2015) 337–341.
- S. Hallegatte, C. Green, R.J. Nicholls, J. Corfee-Morlot, Future
flood losses in major coastal cities, Nat. Clim. Change, 3 (2013)
802–806.
- R.J. Nicholls, A. Cazenave, Sea-level rise and its impact on
coastal zones, Science, 328 (2010) 1517–1520.
- L. He, G.S. Li, K. Li, Y.Q. Shu, Estimation of regional sea level
change in the Pearl River Delta from tide gauge and satellite
altimetry data, Estuarine Coastal Shelf Sci., 141 (2014) 69–77.
- B.Q. Huang, A. Kunoth, An optimization based empirical mode
decomposition scheme, J. Comput. Appl. Math., 240 (2013)
174–183.
- Z.H. Wu, N.E. Huang, A study of the characteristics of white
noise using the empirical mode decomposition method, Proc.
Roy. Soc. A, 460 (2004) 1597–1611.
- D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning
representations by back-propagating errors, Nature, 323 (1986)
533–536.
- J.A. Church, N.J. White, R. Coleman, K. Lambeck, J.X. Mitrovica,
Estimates of the regional distribution of sea level rise over the
1950-2000 period, J. Clim., 17 (2004) 2609–2625.
- T. Lee, T.B.M.J. Ouarda, An EMD and PCA hybrid approach
for separating noise from signal, and signal in climate change
detection, Int. J. Climatol., 32 (2012) 624–634.
- T. Chen, Q. Yang, X. Xu, The characteristics of sea level change
along the coast of Guangdong Province, Tropic Oceanol., 16
(1997) 95–100.
- J.A. Church, N.J. White, A 20th century acceleration in global
sea-level rise, Geophys. Res. Lett., 33 (2006) 313–324.
- G.I. Roden, Low-frequency sea level oscillations along the
Pacific Coast of North America, J. Geophys. Res., 71 (1966)
4755–4776.
- R.R. Torres, M.N. Tsimplis, Seasonal sea level cycle in the
Caribbean Sea, J. Geophys. Res., 117 (2012) C07011.
- F.M. Calafat, D.P. Chambers, M.N. Tsimplis, Inter-annual
to decadal sea-level variability in the coastal zones of the
Norwegian and Siberian Seas: the role of atmospheric forcing, J.
Geophys. Res., 118 (2013) 1287–1301.
- M. Marcos, A. Amores, Quantifying anthropogenic and natural
contributions to thermosteric sea level rise, Geophys. Res. Lett.,
41 (2014) 2502–2507.
- F.J. Wu, L.S. Qu, An improved method for restraining the end
effect in empirical mode decomposition and its applications to
the fault diagnosis of large rotating machinery, J. Sound Vib.,
314 (2008) 586–602.
- G. Brasseur, P.C. Simon, Stratospheric chemical and thermal
response to long-term variability in solar UV irradiance, J.
Geophys. Res., 86 (1981) 7343–7362.
- W. Zheng, Distribution of annual rates of sea level and variation
of long-period constituents in China, Mar. Sci. Bull., 18 (1999)
1–10.
- B. Pradhan, S. Lee, Regional landslide susceptibility analysis
using back-propagation neural network model at Cameron
Highland, Malaysia, Landslides, 7 (2010) 13–30.
- B.N. Asmar, P. Ergenzinger, Long-term prediction of the water
level and salinity in the Dead Sea, Hydrol. Process., 16 (2002)
2819–2831.
- Y.C. Cheng, O.B. Andersen, P. Knudsen, Integrating non-tidal
sea level data from altimetry and tide gauges for coastal sea
level prediction, Adv. Space Res., 50 (2012) 1099–1106.
- T.L. Lee, Back-propagation neural network for long-term tidal
predictions, Ocean Eng., 31 (2004) 225–238.