References

  1. S. Panigrahi, S. Kundu, S.K. Ghosh, S. Nath, T. Pal, General method of synthesis for metal nanoparticles, J. Nanopart. Res., 6 (2004) 411–414.
  2. K.G. Ajay, G. Mona, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26 (2005) 3995–4021.
  3. L.S. Ana, M.O. Riansares, S.L. Jon, C. Carmen, Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact, Anal. Methods, 6 (2014) 38–56.
  4. F. Huilong, P. Zhiwei, L. Lei, Y. Yang, L. Wei, L.G.S. Errol, F. Xiujun, M.T. James, Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries, Nano Res., 7 (2014) 502–510.
  5. Z. Luksiene, 16—Nanoparticles and their potential application as antimicrobials in the food industry, Elsevier, Amsterdam, 2017, pp. 567–601.
  6. L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: a review, Particuology, 30 (2017) 1–14.
  7. Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and and poly(vinyl pyrrolidone), Chem. Mater., 14 (2002) 4736–4745.
  8. D. Tonti, M. Chergui, Photochemically grown silver nanoparticles with wavelength-controlled size and shape, Nano Lett., 3 (2003) 1565–1568.
  9. P.R. Swami, R. Selvakannan, M. Sastry, One-step synthesis of ordered two-dimensional assemblies of silver nanoparticles by the spontaneous reduction of silver ions by pentadecylphenol Langmuir monolayers, J. Phys. Chem. B, 108 (2004) 19269–19275.
  10. H. Deepika, L. Jacob, N.N. Rajender, A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C, ACS Sustainable Chem. Eng., 1 (2013) 703–712.
  11. T. Klaus, R. Joerger, E. Olsson, C.G. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated, Proc. Natl. Acad. Sci. U.S.A., 96 (1999) 13611–13614.
  12. Y. Konishi, T. Uruga, Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae, J. Biotechnol., 128 (2007) 648–653.
  13. S.S. Shankar, A. Ahmed, B. Akkamwar, M. Sastry, A. Rai, A. Singh, Biological synthesis of triangular gold nanoprisms, Nature, 3 (2004) 482.
  14. N. Ahmad, S. Sharma, V.N. Singh, S.F. Shamsi, A. Fatma, B.R. Mehta, Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization, Biotechnol. Res. Int., 454090 (2011) 1–8.
  15. S. Roy, T.K. Das, Plant mediated green synthesis of silver nanoparticles—a review, Int J. Plant Biol. Res, 3 (2015) 1044.
  16. T.X. Fan, S.K. Chow, D. Zhang, Biomorphic mineralization: from biology to materials, Prog. Mater. Sci., 54 (2009) 542–659.
  17. M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities, Mater. Sci. Semicond. Process., 39 (2015) 621–628.
  18. L. Fu, Z. Fu, Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity, Ceram. Int., 41 (2015) 2492–2496.
  19. S. Ambika, M. Sundrarajan, Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria, J. Photochem. Photobiol., B, 146 (2015) 52–57.
  20. Y. Cai, Y. Shen, A. Xie, S. Li, X. Wang, Green synthesis of soyabean sprouts-mediated superparamagnetic Fe3O4 nanoparticles, J. Magn. Magn. Mater., 322 (2010) 2938–2943.
  21. S. Venkateswarlu, B. Natesh Kumar, C.H. Prasad, P. Venkateswarlu, N.V.V. Jyothi, Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract, Physica B, 449 (2014) 67–71.
  22. M.G. Balamurughan, S. Mohanraj, S. Kodhaiyolii, V. Pugalenthi, Ocimum sanctum leaf extract mediated green synthesis of iron oxide nanoparticles: spectroscopic and microscopic studies, J. Chem. Pharmacol. Sci., 4 (2014) 201–204.
  23. S. Venkateswarlu, Y.S. Rao, T. Balaji, B. Prathima, N.V.V. Jyothi, Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract, Mater. Lett., 100 (2013) 241–244.
  24. K. Mohan Kumar, B. Kumar Mandal, K. Siva Kumar, P. Sreedhara Reddy, B. Sreedhar, Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract, Spectrochim Acta, Part A, 102 (2013) 128–133.
  25. M. Harshiny, C. Nivedhini Iswarya, M. Matheswaran, Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent, Powder Technol., 286 (2015) 744–749.
  26. T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyac, A.E. Eroglub, T.B. Scott, K.R. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes, Chem. Eng. J., 172 (2011) 258–266.
  27. M. Martinez-Cabanas, M. Lopez-Garcia, L. Barriada, R. Herrero, E. Sastre de Vicente, Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal, Chem. Eng. J., 301 (2016) 83–91.
  28. P. Manokaran, R. Saravanathamizhan, C. Ahmed Basha, T. Kannadasan, Feed-forward back-propagation neural network for the electro-oxidation of distillery effluent, Chem. Eng. Commun., 201 (2014)1404–1416.
  29. S. Aber, A.R. Amani-Ghadim, V. Mirzajani, Removal of Cr(VI) from polluted solutions by electrocoagulation: modeling of experimental results using artificial neural network, J. Hazard. Mater., 171 (2009) 484–490.
  30. M. Tanzifi, S.H. Hosseini, A. Dehghani Kiadehi, M. Olazar, K. Karimipour, R. Rezaiemehr, I. Ali, Artificial neural network optimization for methyl orange adsorption onto polyaniline nano-adsorbent: kinetic, isotherm and thermodynamic studies, J. Mol. Liq., 244 (2017) 189–200.
  31. M. Sweta, S. Yogendra, V. Devendra Kumar, H. Syed Hadi Hasan, Synthesis of CuO nanoparticles through green route using Citrus limon juice and its application as nanosorbent for Cr(VI) remediation: process optimization with RSM and ANN-GA based model, Process Saf. Environ. Prot., 96 (2015) 156–166.
  32. M. Tahani, M. Vakili, S. Khosrojerdi, Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid, Int. Commun. Heat Mass Transfer, 76 (2016) 358–365.
  33. R. Saravanathamizhan, K. Harsha Vardhan, D. Gnana Prakash, N. Balasubramanian, RSM and ANN modeling for electrooxidation of simulated wastewater using CSTER, Desal. Wat. Treat., 55 (2014) 1445–1452.
  34. S. Sakthivel, B. Pitchumani, Optimization of operating variables for production of nanoparticles using response surface modeling, Chem. Eng. Commun., 200 (2013) 289–304.
  35. P. Shabanzadeh, R. Yusof, K. Shameli, Neural network modeling for prediction size of silver nanoparticles in montmorillonite/starch synthesis by chemical reduction method, Dig. J. Nanomater. Biostruct., 9 (2014) 1699–1711.
  36. F. Zheng, G. Zheng, A.G. Deaciuc, C.G. Zhan, L.P. Dwoskin, P.A. Crooks, Computational neural network analysis of the affinity of lobeline and tetrabenazine analogs for the vesicular monoamine transporter-2, Med. Chem., 15 (2007) 2975–2992.
  37. B. Louis, V.K. Agrawal, P.V. Khadikar, Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses, Eur. J. Med. Chem., 45 (2010) 4018–4025.
  38. M.H. Fatemi, A. Heidari, M. Ghorbanzade, Prediction of aqueous solubility of drug-like compounds by using an artificial neural network and least-squares support vector machine, Bull. Chem. Soc. Jpn., 83 (2010) 1338–1345.
  39. K.M. Honório, E.F. de Lima, M.G. Quiles, R.A.F. Romero, F.A. Molfetta, A.B.F. Da-silva, Artificial neural networks and the study of the psychoactivity of cannabinoid compounds, Chem. Biol. Drug Des., 75 (2010) 632–640.
  40. M. Uysala, H.Tanyildizi, Estimation of compressive strength of self-compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network, Constr. Build. Mater., 27 (2012) 404–414.
  41. M. Yurdakula, H. Akdas, Modeling uniaxial compressive strength of building stones using non-destructive test results as neutral networks input parameters, Constr. Build. Mater., 47 (2013) 1009–1010.
  42. F. Xiao, S.N. Amirkhanian, C. Huang, Prediction of fatigue life of rubberized asphalt concrete mixtures containing reclaimed asphalt pavement using artificial neural networks, J. Mater. Civil Eng., 21 (2009) 253–261.
  43. L. Bal, F. Buyle-Bodin, Artificial neural network for predicting drying shrinkage of concrete, Constr. Build. Mater., 38 (2013) 248–254.
  44. P. Cachim, Using artificial neural networks for calculation of temperatures in timber under fire loading, Constr. Build. Mater., 25 (2011) 4175–4180.
  45. K. Sathya, R. Saravanathamizhan, G. Baskar, Ultrasound assisted phytosynthesis of iron oxide nanoparticle, Ultrason. Sonochem., 39 (2017) 446–451.
  46. A.M. Zenooz, F.Z. Ashtiani, R. Ranjbar, F. Nikbakht, O. Bolouri, Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation, Prep. Biochem. Biotechnol., 47 (2017) 570–577.
  47. R. Babou-Kammoe, S. Hamoudi, F. Larachi, K. Belkacemi, Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions, Can. J. Chem. Eng., 90 (2012) 26–33.
  48. R. Agnihotri, S.K. Mahuli, S.S. Chauk, L.-S. Fan, Influence of surface modifiers on the structure of precipitated calcium carbonate, Ind. Eng. Chem. Res., 38 (1999) 2283–2291.