References

  1. G. Lettinga, J. Field, L.J. Van, G. Zeeman, P.L. Huishoff, Advanced anaerobic wastewater treatment in the near future, Water Sci. Technol., 35 (1997) 5–12.
  2. W.P. Barber, D.C. Stuckey, The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review, Water Res., 33 (1999) 1559–1578.
  3. R.C. Jin, J.J. Yu, C. Ma, G.F. Yang, B.L. Hu, Z.J. Ping, Performance and robustness of an ANAMMOX anaerobic baffled reactor subjected to transient shock loads, Bioresour. Technol., 114 (2012) 126–136.
  4. D.H. Zitomer, J.D. Shrout, Feasibility and benefits of methanogenesis under oxygen-limited conditions, Waste Manag., 18 (1998) 107–116.
  5. J.A. Field, A.J. Stams, M.Kato, G. Schraa, Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia, Antonie Van Leeuwenhoek, 67 (1995) 47–77.
  6. S.J. Pirt, Y.K. Lee, Enhancement of methanogenesis by traces of oxygen in bacterial digestion of biomass, FEMS Microbiol. Lett., 18 (1983) 61–63.
  7. C.F. Shen, S.R. Guiot, Long-term impact of dissolved O2 on the activity of anaerobic granules, Biotechnol. Bioeng., 49 (1996) 611–620.
  8. D.H. Zitomer, Stoichiometry of combined aerobic and methanogenic COD transformation, Water Res., 32 (1998) 669–676.
  9. D.H. Zitomer, J.D. Shrout, High-sulfate, high chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds, Water Environ. Res., 72 (2000) 90–97.
  10. C. Dong, B, Lii, Z. Chen, Characteristic of anaerobic granular sludge and digestion sludge under microaerobic conditions, J. Nanjing Univ. Sci. Technol., 29 (2005) 216–222.
  11. J. Gerritse, F. Schut, J.C. Gottschal, Mixed chemostat cultures of obligately aerobic and fermentative or methanogenic bacteria grown under oxygen-limiting conditions, FEMS Microbiol. Lett., 66 (1990) 87–94.
  12. APHA/AWWA/AWEF, Standard Methods for the Examination of Water and Wastewater, 18th ed., American Public Health Association, Washington, D.C. USA, 1992.
  13. J.H. Tay, Y.G. Yan, Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors, Water Environ. Res., 68 (1996) 1140–1150.
  14. A.P. Zeng, W.D. Deckwer, Bioreaction techniques under microaerobic conditions: from molecular level to pilot plant reactors, Chem. Eng. Sci., 51 (1996) 2305–2314.
  15. J.H.F. Pereboom, Size distribution model for methanogenic granules from full scale UASB and IC reactors, Water Sci. Technol., 30 (1994) 211–221.
  16. J.L. Wang, N. Yang, Partial nitrification under limited dissolved oxygen conditions, Process Biochem., 39 (2004) 1223–1229.
  17. F. Gao, H.M. Zhang, F.L. Yang, H. Qiang, H.J. Li, R. Zhang, Study of an innovative anaerobic (A)/oxic (O)/anaerobic (A) bioreactor based on denitrification-anammox technology treating low C/N municipal sewage, Chem. Eng., 232 (2013) 65–73.
  18. S. Jenni, S.E. Vlaeminck, E. Morgenroth, K.M. Udert, Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios, Water Res., 49 (2014) 316–326.
  19. H.P. Chuang, A. Ohashi, H. Imachi, M. Tandukar, H. Harada, Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition, Water Res., 41 (2007) 295–302.
  20. Y.-H. Ahn, H.-C. Choi, Autotrophic nitrogen removal from sludge digester liquids in upflow sludge bed reactor with external aeration, Process Biochem., 41 (2006) 1945–1950.